
Lecture 2 1/15/2015

1

Natural Language
Processing

Lecture 2—1/15/2015

Susan W. Brown

1/18/2015 Speech and Language Processing - Jurafsky and Martin 2

Today

• Regular expressions

• Finite-state methods

Lecture 2 1/15/2015

2

1/18/2015 Speech and Language Processing - Jurafsky and Martin 3

Regular Expressions and Text
Searching

• Regular expressions are a compact textual
representation of a set of strings that
constitute a language

� In the simplest case, regular expressions
describe regular languages

� Here, a language means a set of strings given
some alphabet.

• Extremely versatile and widely used
technology

� Emacs, vi, perl, grep, etc.

1/18/2015 Speech and Language Processing - Jurafsky and Martin 4

Example

• Find all the instances of the word “the” in
a text.

� /the/

� /[tT]he/

� /\b[tT]he\b/

Lecture 2 1/15/2015

3

1/18/2015 Speech and Language Processing - Jurafsky and Martin 5

Errors

• The process we just went through was
based on fixing two kinds of errors

� Matching strings that we should not have
matched (there, then, other)

� False positives (Type I)

� Not matching things that we should have
matched (The)

� False negatives (Type II)

1/18/2015 Speech and Language Processing - Jurafsky and Martin 6

Errors

• We’ll be telling the same story with respect
to evaluation for many tasks. Reducing the
error rate for an application often involves
two antagonistic efforts:

� Increasing accuracy, or precision, (minimizing
false positives)

� Increasing coverage, or recall, (minimizing
false negatives).

Lecture 2 1/15/2015

4

1/18/2015 Speech and Language Processing - Jurafsky and Martin 7

3 Formalisms

• Recall that I said that regular expressions
describe languages (sets of strings)

• Turns out that there are 3 formalisms for
capturing such languages, each with their own
motivation and history

� Regular expressions

� Compact textual strings

• Perfect for specifying patterns in programs or command-lines

� Finite state automata

� Graphs

� Regular grammars

� Rules

3 Formalisms

• These three approaches are all equivalent
in terms of their ability to capture regular
languages. But, as we’ll see, they do
inspire different algorithms and
frameworks�

1/18/2015 Speech and Language Processing - Jurafsky and Martin 8

Lecture 2 1/15/2015

5

1/18/2015 Speech and Language Processing - Jurafsky and Martin 9

FSAs as Graphs

• Let’s start with the sheep language from
Chapter 2
� /baa+!/

1/18/2015 Speech and Language Processing - Jurafsky and Martin 10

Sheep FSA

• We can say the following things about this
machine
� It has 5 states

� b, a, and ! are in its alphabet

� q0 is the start state

� q4 is an accept state

� It has 5 transitions

Lecture 2 1/15/2015

6

1/18/2015 Speech and Language Processing - Jurafsky and Martin 11

But Note

• There are other machines that
correspond to this same language

• More on this one later

1/18/2015 Speech and Language Processing - Jurafsky and Martin 12

More Formally

• You can specify an FSA by enumerating
the following things.

� The set of states: Q

� A finite alphabet: Σ

� A start state

� A set of accept states

� A transition function that maps QxΣ to Q

Lecture 2 1/15/2015

7

1/18/2015 Speech and Language Processing - Jurafsky and Martin 13

About Alphabets

• Don’t take term alphabet too narrowly; it
just means we need a finite set of symbols
in the input.

• These symbols can and will stand for
bigger objects that may in turn have
internal structure

� Such as another FSA

1/18/2015 Speech and Language Processing - Jurafsky and Martin 14

Dollars and Cents

Lecture 2 1/15/2015

8

1/18/2015 Speech and Language Processing - Jurafsky and Martin 15

Yet Another View

• The guts of an FSA
can ultimately be
represented as a
table

b a !

0 1

1 2

2 3

3 3 4

4

If you’re in state 1
and you’re looking at
an a, go to state 2

1/18/2015 Speech and Language Processing - Jurafsky and Martin 16

Recognition

• Recognition is the process of determining if
a string should be accepted by a machine

• Or… it’s the process of determining if a
string is in the language we’re defining
with the machine

• Or… it’s the process of determining if a
regular expression matches a string

• Those all amount to the same thing in the
end

Lecture 2 1/15/2015

9

1/18/2015 Speech and Language Processing - Jurafsky and Martin 17

Recognition

• Traditionally, (Turing’s notion) this
process is depicted with an input
string written on a tape.

1/18/2015 Speech and Language Processing - Jurafsky and Martin 18

Recognition

• Simply a process of starting in the start
state

• Examining the current input

• Consulting the table

• Going to a new state and updating the
tape pointer.

• Until you run out of tape.

Lecture 2 1/15/2015

10

1/18/2015 Speech and Language Processing - Jurafsky and Martin 19

D-Recognize

1/18/2015 Speech and Language Processing - Jurafsky and Martin 20

Key Points

• Deterministic means that at each point in
processing there is always one unique
thing to do (no choices; no ambiguity).

• D-recognize is a simple table-driven
interpreter

• The algorithm is universal for all
unambiguous regular languages.

� To change the machine, you simply change
the table.

Lecture 2 1/15/2015

11

1/18/2015 Speech and Language Processing - Jurafsky and Martin 21

Key Points

• Crudely therefore… matching strings with
regular expressions (ala Perl, grep, etc.) is a
matter of

� translating the regular expression into a machine
(a table) and

� passing the table and the string to an interpreter
that implements D-recognize (or something like it)

1/18/2015 Speech and Language Processing - Jurafsky and Martin 22

Recognition as Search

• You can view this algorithm as a trivial kind
of state-space search.

• States are pairings of tape positions and
state numbers.

• Operators are compiled into the table

• Goal state is a pairing with the end of tape
position and a final accept state

• It is trivial because?

Lecture 2 1/15/2015

12

1/18/2015 Speech and Language Processing - Jurafsky and Martin 23

Non-Determinism

1/18/2015 Speech and Language Processing - Jurafsky and Martin 24

Table View

Allow multiple entries in
the table to capture
non-determinism

b a !

0 1

1 2

2 2,3

3 4

4

Lecture 2 1/15/2015

13

1/18/2015 Speech and Language Processing - Jurafsky and Martin 25

Non-Determinism cont.

• Yet another technique

� Epsilon transitions

� Key point: these transitions do not examine or
advance the tape during recognition

1/18/2015 Speech and Language Processing - Jurafsky and Martin 26

Equivalence

• Non-deterministic machines can be
converted to deterministic ones with a
fairly simple construction

• That means that they have the same
power; non-deterministic machines are
not more powerful than deterministic
ones in terms of the languages they can
and can’t characterize

Lecture 2 1/15/2015

14

1/18/2015 Speech and Language Processing - Jurafsky and Martin 27

ND Recognition

• Two basic approaches (used in all major
implementations of regular expressions,
see Friedl 2006)

1. Either take a ND machine and convert it to a
D machine and then do recognition with
that.

2. Or explicitly manage the process of
recognition as a state-space search (leaving
the machine/table as is).

1/18/2015 Speech and Language Processing - Jurafsky and Martin 28

Non-Deterministic
Recognition: Search

• In a ND FSA there exists at least one path
through the machine for a string that is in the
language defined by the machine.

• But not all paths directed through the machine
for an accept string lead to an accept state.

• No paths through the machine lead to an accept
state for a string not in the language.

Lecture 2 1/15/2015

15

1/18/2015 Speech and Language Processing - Jurafsky and Martin 29

Non-Deterministic
Recognition

• So success in non-deterministic
recognition occurs when a path is found
through the machine that ends in an
accept.

• Failure occurs when all of the possible
paths for a given string lead to failure.

1/18/2015 Speech and Language Processing - Jurafsky and Martin 30

Example

b a a a ! \

q0 q1 q2 q2 q3 q4

Lecture 2 1/15/2015

16

1/18/2015 Speech and Language Processing - Jurafsky and Martin 31

Example

1/18/2015 Speech and Language Processing - Jurafsky and Martin 32

Example

Lecture 2 1/15/2015

17

1/18/2015 Speech and Language Processing - Jurafsky and Martin 33

Example

1/18/2015 Speech and Language Processing - Jurafsky and Martin 34

Example

Lecture 2 1/15/2015

18

1/18/2015 Speech and Language Processing - Jurafsky and Martin 35

Example

1/18/2015 Speech and Language Processing - Jurafsky and Martin 36

Example

Lecture 2 1/15/2015

19

1/18/2015 Speech and Language Processing - Jurafsky and Martin 37

Example

1/18/2015 Speech and Language Processing - Jurafsky and Martin 38

Example

Lecture 2 1/15/2015

20

1/18/2015 Speech and Language Processing - Jurafsky and Martin 39

Key Points

• States in the search space are pairings of
tape positions and states in the machine.

• By keeping track of as yet unexplored
states, a recognizer can systematically
explore all the paths through the machine
given an input.

1/18/2015 Speech and Language Processing - Jurafsky and Martin 40

Why Bother?

• Non-determinism doesn’t get us more
formal power and it causes headaches so
why bother?

� More natural (understandable) solutions

� Not always obvious to users whether the
regex that they’ve produced is deterministic
or not

� Better to not make them worry about it

Lecture 2 1/15/2015

21

Admin Questions?

1/18/2015 Speech and Language Processing - Jurafsky and Martin 41

Converting NFAs to DFAs

• The Subset Construction is the means by
which we can convert an NFA to a DFA
automatically.

• The intuition is to think about being in
multiple states at the same time. Let’s go
back to our earlier example where we’re in
state q2 looking at an “a”

1/18/2015 Speech and Language Processing - Jurafsky and Martin 42

Lecture 2 1/15/2015

22

Subset Construction

• So the trick is to simulate going to both q2 and
q3 at the same time

• One way to do this is to imagine a new state of
a new machine that represents the state of
being in states q2 and q3 at the same time

� Let’s call that new state {q2,q3}

� That’s just the name of a new state but it helps us remember
where it came from

� That’s a subset of the original set of states

• The construction does this for all possible
subsets of the original states (the powerset).

� And then we fill in the transition table for that set

1/18/2015 Speech and Language Processing - Jurafsky and Martin 43

Subset Construction

• Given an NFA with the usual parts: Q, Σ,
transition function δ, start state q0, and

designated accept states

• We’ll construct a new DFA that accepts the same
language where

� States of the new machine are the powerset of states
Q: call it QD

� Set of all subsets of Q

� Start state is {q0}

� Alphabet is the same: Σ

� Accept states are the states in QD that contain

any accept state from Q

1/18/2015 Speech and Language Processing - Jurafsky and Martin 44

Lecture 2 1/15/2015

23

Subset Construction

• What about the transition function?

� For every new state we’ll create a transition
on a symbol α from the alphabet to a new
state as follows

� δD({q1,…,qk}, α) = is the

union over all i = 1,…,k of δN(qi, α)

for all α in the alphabet

1/18/2015 Speech and Language Processing - Jurafsky and Martin 45

Baaa!

• How does that work out for our example?

� Alphabet is still “a”, “b” and “!”

� Start state is {q0}

� Rest of the states are: {q1}, {q2},... {q4},
{q1,q2}, {q1,q3}... {q0,q1,q2,q3,q4,q5}

� All 25-1 subsets of states in Q

• What’s the transition table going to look
like?

1/18/2015 Speech and Language Processing - Jurafsky and Martin 46

Lecture 2 1/15/2015

24

Lazy Method

1/18/2015 Speech and Language Processing - Jurafsky and Martin 47

b a !

q0 q1

q1 q2

q2 q2,q3

q3 q4

q4 b a !

{q0}

Baaa!

1/18/2015 Speech and Language Processing - Jurafsky and Martin 48

b a !

q0 q1

q1 q2

q2 q2,q3

q3 q4

q4 b a !

{q0} {q1}

Lecture 2 1/15/2015

25

Baaa!

1/18/2015 Speech and Language Processing - Jurafsky and Martin 49

b a !

q0 q1

q1 q2

q2 q2,q3

q3 q4

q4 b a !

{q0} {q1}

{q1}

Baaa!

1/18/2015 Speech and Language Processing - Jurafsky and Martin 50

b a !

q0 q1

q1 q2

q2 q2,q3

q3 q4

q4 b a !

{q0} {q1}

{q1} {q2}

{q2}

Lecture 2 1/15/2015

26

Baaa!

1/18/2015 Speech and Language Processing - Jurafsky and Martin 51

b a !

q0 q1

q1 q2

q2 q2,q3

q3 q4

q4 b a !

{q0} {q1}

{q1} {q2}

{q2} {q2,q3}

{q2,q3}

Baaa!

1/18/2015 Speech and Language Processing - Jurafsky and Martin 52

b a !

q0 q1

q1 q2

q2 q2,q3

q3 q4

q4 b a !

{q0} {q1}

{q1} {q2}

{q2} {q2,q3}

{q2,q3} {q2,q3}

Lecture 2 1/15/2015

27

Baaa!

1/18/2015 Speech and Language Processing - Jurafsky and Martin 53

b a !

q0 q1

q1 q2

q2 q2,q3

q3 q4

q4 b a !

{q0} {q1}

{q1} {q2}

{q2} {q2,q3}

{q2,q3} {q2,q3} {q4}

{q4}

Couple of Notes

• We didn’t come close to needing 2Q new
states. Most of those were unreachable.
So in theory there is the potential for an
explosion in the number of states. In
practice, it may be more manageable.

• Draw the new deterministic machine from
the table on the previous slide... It should
look familiar.

1/18/2015 Speech and Language Processing - Jurafsky and Martin 54

Lecture 2 1/15/2015

28

1/18/2015 Speech and Language Processing - Jurafsky and Martin 55

Compositional Machines

• Recall that formal languages are just sets of
strings

• Therefore, we can talk about set operations
(intersection, union, concatenation,
negation) on languages

• This turns out to be a very useful

� It allows us to decompose problems into smaller
problems, solve those problems with specific
languages, and then compose those solutions to
solve the big problems.

Example

• Create a regex to match all the ways that
people write down phone numbers. For
just the U.S. that needs to cover
� (303) 492-5555

� 303.492.5555

� 303-492-5555

� 1-303-492-5555

� (01) 303-492-5555

• You could write a big hairy regex to capture all that, or
you could write individual regex’s for each type and then
OR them together into a new regex/machine.

• How does that work?

1/18/2015 Speech and Language Processing - Jurafsky and Martin 56

Lecture 2 1/15/2015

29

1/18/2015 Speech and Language Processing - Jurafsky and Martin 57

Union (Or)

1/18/2015 Speech and Language Processing - Jurafsky and Martin 58

Negation

• Construct a machine M2 to accept all
strings not accepted by machine M1 and
reject all the strings accepted by M1

� Invert all the accept and not accept states in
M1

• Does that work for non-deterministic
machines?

Lecture 2 1/15/2015

30

1/18/2015 Speech and Language Processing - Jurafsky and Martin 59

Intersection (AND)

• Accept a string that is in both of two
specified languages

• An indirect construction…

� A^B = ~(~A or ~B)

Problem Set 1

• From the Jurafsky and Martin book, end of
chapter 2

• Problem 2.1; subsections 2, 4, and 6

• Problem 2.4

• Due Thursday, Jan. 22, in class

1/18/2015 Speech and Language Processing - Jurafsky and Martin 60

Lecture 2 1/15/2015

31

1/18/2015 Speech and Language Processing - Jurafsky and Martin 61

Next Week

• On to Chapter 3

� Crash course in English morphology

� Finite state transducers

� Applications

� Lexicons

� Segmentation

