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• Necessary for many tasks 
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def  GlideFormation  i -> j, ĩ -> j,̃ ɪ -> j, ɪ ̃-> j ̃|| V _ V ;        
def  GlideEpenthesis [..] -> j || V V _ V ;                                 
def  Nasalization       a -> ã, ɛ -> ɛ,̃ ɪ -> ɪ,̃ j -> j,̃ r -> n // [Nas-C] _ ;  
def  Lateralization      r -> l || \l l _ ;                                     
def  Degemination     l l -> l || V C* V _ ;                                
def  Hardening            r -> d || Nas _ ;                                      
def  rMerger                r r -> t ;                                             
def  VLowering            i -> e, ɪ -> ɛ, ʊ -> ƨ, u -> o || _ [e|ɛ] ;           
def  eDeletion               [ ɛ | ɛ ̃] -> 0 || [ ɛ | ɛ ̃] _ .#. ;                    
def  VowelEpenthesis  [..] -> X || C _ .#. ;                                
def  LabialHarmony    X -> ʊ || LabRnd C* _ .o. X -> ɪ ;  

…

Grammatical Description
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(a) inflection tables

(b) paradigms

(c) collapse paradigms

Figure 1: Generalizing inflection tables into
paradigm functions: (1) a number of complete in-
flection tables are given; (2) the aligned Longest
Common Subsequence is extracted; (3) resulting
identical paradigms are merged. If the resulting
paradigm f1 is interpreted as a function, f1(shr, nk)
produces shrink, shrank, shrunk.

Robins, 1959; Matthews, 1972; Stump, 2001). In
particular, we assume a model where a single func-
tion generates all the possible inflected forms of a
group of lemmas that behave alike. This approach
has earlier been seen as an alternative to finite-state
morphology, and the functions that model inflec-
tional behavior have been hand-built in much pre-
vious work (Forsberg and Ranta, 2004; Forsberg
et al., 2006; Détrez and Ranta, 2012). Here, we
assume the recent model of Ahlberg et al. (2014)
and Ahlberg et al. (2015), which work with a sys-
tem that automatically learns these functions that
model inflection tables from labeled data.

The purpose of modeling inflection types as func-
tions is to be able to generalize concrete manifesta-
tions of word inflection for specific lemmas, and to
apply those generalizations to unseen word forms.
The generalization in question is performed by ex-
tracting the Longest Common Subsequence (LCS)
from all word forms related to some specific lemma
and then expressing each word form in terms of
the LCS (Hulden, 2014). The LCS in turn is bro-
ken down into possibly discontiguous sequences
that express parts of word forms that are variable
in nature. Figure 1 shows a toy example of four
inflection tables generalized into variable- and non-
variable parts by first extracting the LCS, express-
ing the original word forms in terms of this LCS,
and then collapsing the resulting functions that are
identical. The resulting representation, which is es-
sentially a set of strings which have variable parts
(x1, . . . , x

n

), and fixed parts (such as i, a, u) that

can be used to generate an unbounded number of
new inflection tables by instantiating the variable
parts in new ways and concatenating the variables
and the fixed parts.

This learning method often produces a very
small number of functions compared with the num-
ber of complete inflection tables that have been
input—obviously, because many lemmas behave
alike and result in identical functions. We note that
the output of this procedure is human-readable, i.e.
it can be inspected (even in real-world scenarios)
for correctness and also hand-corrected in case of
noise in the learning data. In the current work, we
use these functions as the backbone of a generative
model and implement them as transducers that can
be run in the inverse direction to map fully inflected
forms into their lemmas and morphosyntactic de-
scriptions.

2.1 Paradigm functions

The variables x1, . . . , xn

that are used in the
paradigm function representation capture possible
inter-word variation. This means that each lemma
that gives rise to an inflection table can be directly
represented as simply an instantiation of the vari-
ables, together with the inflection function. As seen
in Figure 1, the function f1 learned from the inflec-
tion tables swim and drink can be used to represent
some other word, e.g. sing by instantiating x1 as s
and x2 as ng.

As we collect a large number of inflection ta-
bles, many of which result in identical paradigms,
we can also collect statistics about the variables
involved and how they were assumed to be instan-
tiated in the original table. For example, from the
truncated tables in Figure 1, we can gather that
f1 has witnessed x1 as both dr and sw, and x2

as nk and m. These statistics can be used to turn
the learned functions into a restricted generative
model that produces entire inflection tables, but
also taking advantage of how variables tend to be
instantiated in that paradigm function.

Additionally, since each possible inflected form
consists of the same variables, we can also define a
string-to-string mapping between any two related
forms, where the content of the variable parts stay
fixed, and the non-variable parts change. For ex-
ample, in Figure 1, we know that we can, for some
verbs, go from the past participle (e.g. drunk)
to the past (e.g. drank) by a string transforma-
tion x1 u x2! x1 a x2, with some constraints

43
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Robins, 1959; Matthews, 1972; Stump, 2001). In
particular, we assume a model where a single func-
tion generates all the possible inflected forms of a
group of lemmas that behave alike. This approach
has earlier been seen as an alternative to finite-state
morphology, and the functions that model inflec-
tional behavior have been hand-built in much pre-
vious work (Forsberg and Ranta, 2004; Forsberg
et al., 2006; Détrez and Ranta, 2012). Here, we
assume the recent model of Ahlberg et al. (2014)
and Ahlberg et al. (2015), which work with a sys-
tem that automatically learns these functions that
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The purpose of modeling inflection types as func-
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The generalization in question is performed by ex-
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from all word forms related to some specific lemma
and then expressing each word form in terms of
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ken down into possibly discontiguous sequences
that express parts of word forms that are variable
in nature. Figure 1 shows a toy example of four
inflection tables generalized into variable- and non-
variable parts by first extracting the LCS, express-
ing the original word forms in terms of this LCS,
and then collapsing the resulting functions that are
identical. The resulting representation, which is es-
sentially a set of strings which have variable parts
(x1, . . . , x
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), and fixed parts (such as i, a, u) that

can be used to generate an unbounded number of
new inflection tables by instantiating the variable
parts in new ways and concatenating the variables
and the fixed parts.

This learning method often produces a very
small number of functions compared with the num-
ber of complete inflection tables that have been
input—obviously, because many lemmas behave
alike and result in identical functions. We note that
the output of this procedure is human-readable, i.e.
it can be inspected (even in real-world scenarios)
for correctness and also hand-corrected in case of
noise in the learning data. In the current work, we
use these functions as the backbone of a generative
model and implement them as transducers that can
be run in the inverse direction to map fully inflected
forms into their lemmas and morphosyntactic de-
scriptions.

2.1 Paradigm functions

The variables x1, . . . , xn

that are used in the
paradigm function representation capture possible
inter-word variation. This means that each lemma
that gives rise to an inflection table can be directly
represented as simply an instantiation of the vari-
ables, together with the inflection function. As seen
in Figure 1, the function f1 learned from the inflec-
tion tables swim and drink can be used to represent
some other word, e.g. sing by instantiating x1 as s
and x2 as ng.

As we collect a large number of inflection ta-
bles, many of which result in identical paradigms,
we can also collect statistics about the variables
involved and how they were assumed to be instan-
tiated in the original table. For example, from the
truncated tables in Figure 1, we can gather that
f1 has witnessed x1 as both dr and sw, and x2

as nk and m. These statistics can be used to turn
the learned functions into a restricted generative
model that produces entire inflection tables, but
also taking advantage of how variables tend to be
instantiated in that paradigm function.

Additionally, since each possible inflected form
consists of the same variables, we can also define a
string-to-string mapping between any two related
forms, where the content of the variable parts stay
fixed, and the non-variable parts change. For ex-
ample, in Figure 1, we know that we can, for some
verbs, go from the past participle (e.g. drunk)
to the past (e.g. drank) by a string transforma-
tion x1 u x2! x1 a x2, with some constraints
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(a) inflection tables

(b) paradigms

(c) collapse paradigms

Figure 1: Generalizing inflection tables into
paradigm functions: (1) a number of complete in-
flection tables are given; (2) the aligned Longest
Common Subsequence is extracted; (3) resulting
identical paradigms are merged. If the resulting
paradigm f1 is interpreted as a function, f1(shr, nk)
produces shrink, shrank, shrunk.

Robins, 1959; Matthews, 1972; Stump, 2001). In
particular, we assume a model where a single func-
tion generates all the possible inflected forms of a
group of lemmas that behave alike. This approach
has earlier been seen as an alternative to finite-state
morphology, and the functions that model inflec-
tional behavior have been hand-built in much pre-
vious work (Forsberg and Ranta, 2004; Forsberg
et al., 2006; Détrez and Ranta, 2012). Here, we
assume the recent model of Ahlberg et al. (2014)
and Ahlberg et al. (2015), which work with a sys-
tem that automatically learns these functions that
model inflection tables from labeled data.

The purpose of modeling inflection types as func-
tions is to be able to generalize concrete manifesta-
tions of word inflection for specific lemmas, and to
apply those generalizations to unseen word forms.
The generalization in question is performed by ex-
tracting the Longest Common Subsequence (LCS)
from all word forms related to some specific lemma
and then expressing each word form in terms of
the LCS (Hulden, 2014). The LCS in turn is bro-
ken down into possibly discontiguous sequences
that express parts of word forms that are variable
in nature. Figure 1 shows a toy example of four
inflection tables generalized into variable- and non-
variable parts by first extracting the LCS, express-
ing the original word forms in terms of this LCS,
and then collapsing the resulting functions that are
identical. The resulting representation, which is es-
sentially a set of strings which have variable parts
(x1, . . . , x

n

), and fixed parts (such as i, a, u) that

can be used to generate an unbounded number of
new inflection tables by instantiating the variable
parts in new ways and concatenating the variables
and the fixed parts.

This learning method often produces a very
small number of functions compared with the num-
ber of complete inflection tables that have been
input—obviously, because many lemmas behave
alike and result in identical functions. We note that
the output of this procedure is human-readable, i.e.
it can be inspected (even in real-world scenarios)
for correctness and also hand-corrected in case of
noise in the learning data. In the current work, we
use these functions as the backbone of a generative
model and implement them as transducers that can
be run in the inverse direction to map fully inflected
forms into their lemmas and morphosyntactic de-
scriptions.

2.1 Paradigm functions

The variables x1, . . . , xn

that are used in the
paradigm function representation capture possible
inter-word variation. This means that each lemma
that gives rise to an inflection table can be directly
represented as simply an instantiation of the vari-
ables, together with the inflection function. As seen
in Figure 1, the function f1 learned from the inflec-
tion tables swim and drink can be used to represent
some other word, e.g. sing by instantiating x1 as s
and x2 as ng.

As we collect a large number of inflection ta-
bles, many of which result in identical paradigms,
we can also collect statistics about the variables
involved and how they were assumed to be instan-
tiated in the original table. For example, from the
truncated tables in Figure 1, we can gather that
f1 has witnessed x1 as both dr and sw, and x2

as nk and m. These statistics can be used to turn
the learned functions into a restricted generative
model that produces entire inflection tables, but
also taking advantage of how variables tend to be
instantiated in that paradigm function.

Additionally, since each possible inflected form
consists of the same variables, we can also define a
string-to-string mapping between any two related
forms, where the content of the variable parts stay
fixed, and the non-variable parts change. For ex-
ample, in Figure 1, we know that we can, for some
verbs, go from the past participle (e.g. drunk)
to the past (e.g. drank) by a string transforma-
tion x1 u x2! x1 a x2, with some constraints
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Generalizing from inflection tables

schreiben 
schreibend 
geschrieben 
schreibe 
schreibst 
schreibt 
schreiben 
schreibt 
...

comprar 
comprando 
comprado 
compro 
compras 
compra 
compramos 
compráis 
... 

DE ES
kauppa 
kaupat 
kaupan 
kauppojen 
kauppaa 
kauppoja 
kaupassa 
kaupoissa 
... 

FI
‘store’[N]‘buy’‘write’
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Generalizing from inflection tables

schreiben 
schreibend 
geschrieben 
schreibe 
schreibst 
schreibt 
schreiben 
schreibt 
...

DE
‘write’

If leihen (to lend) 
is conjugated like 
schreiben (to 
write), what are 
the forms?

“leihen inflects like schreiben”
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Linguistic intuition
"Car la notion du thème est postérieure aux formes 
concrètes composant le paradigme: on trouve le thème en 
dégageant les éléments communs à toutes les formes 
casuelles du paradigme (quand il s’agit de la déclinaison)"  
 
[For the notion of the stem is dependent on the concrete 
forms composing the paradigm: one finds the stem in 
disengaging the elements that are common to all the 
case forms of a paradigm (when dealing with declension)]. 
 
Kuryłowicz (1949 p. 159) 
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schreiben 
schreibend 
geschrieben 
schreibe 
schreibst 
schreibt 

inflection table

“to write” (German)

Formal claim: the common parts (stem) are calculated by extracting 
the Longest Common Subsequence from related forms*

Generalization

*Ahlberg, Forsberg, Hulden (2014, 2015)
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  schrei ben 
  schrei bend 
geschr ieben 
  schrei be 
  schrei b    st 
  schrei b     t 

inflection table

Generalization

Formal claim: the common parts (stem) are calculated by extracting 
the Longest Common Subsequence from related forms*

*Ahlberg, Forsberg, Hulden (2014, 2015)
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  schrei ben 
  schrei bend 
geschr ieben 
  schrei be 
  schrei b    st 
  schrei b     t 

LCS = schrib inflection table

Generalization

Formal claim: the common parts (stem) are calculated by extracting 
the Longest Common Subsequence from related forms*

*Ahlberg, Forsberg, Hulden (2014, 2015)
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  schrei ben 
  schrei bend 
geschr ieben 
  schrei be 
  schrei b    st 
  schrei b     t 

LCS = schrib 
x1 = schr 
x2 = i 
x3 = b

x1 x2 x3

inflection table

Generalization

Formal claim: the common parts (stem) are calculated by extracting 
the Longest Common Subsequence from related forms*

*Ahlberg, Forsberg, Hulden (2014, 2015)
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  schrei ben 
  schrei bend 
geschr ieben 
  schrei be 
  schrei b    st 
  schrei b     t 

unlabeled data (Goldsmith, 2001; Schone and Ju-
rafsky, 2001; Chan, 2006; Creutz and Lagus,
2007; Monson et al., 2008). Hammarström and
Borin (2011) provides a current overview of unsu-
pervised learning.

Previous work with similar semi-supervised
goals as the ones in this paper include Yarowsky
and Wicentowski (2000), Neuvel and Fulop
(2002), Clément et al. (2004). Recent machine
learning oriented work includes Dreyer and Eis-
ner (2011) and Durrett and DeNero (2013), which
documents a method to learn orthographic trans-
formation rules to capture patterns across inflec-
tion tables. Part of our evaluation uses the same
dataset as Durrett and DeNero (2013). Eskander
et al. (2013) shares many of the goals in this paper,
but is more supervised in that it focuses on learn-
ing inflectional classes from richer annotation.

A major departure from much previous work
is that we do not attempt to encode variation
as string-changing operations, say by string edits
(Dreyer and Eisner, 2011) or transformation rules
(Lindén, 2008; Durrett and DeNero, 2013) that
perform mappings between forms. Rather, our
goal is to encode all variation within paradigms
by presenting them in a sufficiently generic fash-
ion so as to allow affixation processes, phonolog-
ical alternations as well as orthographic changes
to naturally fall out of the paradigm specification
itself. Also, we perform no explicit alignment of
the various forms in an inflection table, as in e.g.
Tchoukalov et al. (2010). Rather, we base our al-
gorithm on extracting the longest common subse-
quence (LCS) shared by all forms in an inflection
table, from which alignment of segments falls out
naturally. Although our paradigm representation
is similar to and inspired by that of Forsberg et al.
(2006) and Détrez and Ranta (2012), our method
of generalizing from inflection tables to paradigms
is novel.

3 Paradigm learning

In what follows, we adopt the view that words
and their inflection patterns can be organized
into paradigms (Hockett, 1954; Robins, 1959;
Matthews, 1972; Stump, 2001). We essentially
treat a paradigm as an ordered set of functions
(f1, . . . , fn), where fi:x1, . . . , xn 7! ⌃⇤, that is,
where each entry in a paradigm is a function from
variables to strings, and each function in a partic-
ular paradigm shares the same variables.

3.1 Paradigm representation
We represent the functions in what we call ab-
stract paradigm. In our representation, an ab-
stract paradigm is an ordered collection of strings,
where each string may additionally contain in-
terspersed variables denoted x1, x2, . . . , xn. The
strings represent fixed, obligatory parts of a
paradigm, while the variables represent mutable
parts. These variables, when instantiated, must
contain at least one segment, but may otherwise
vary from word to word. A complete abstract
paradigm captures some generalization where the
mutable parts represented by variables are instan-
tiated the same way for all forms in one particu-
lar inflection table. For example, the fairly simple
paradigm

x1 x1+s x1+ed x1+ing

could represent a set of English verb forms, where
x1 in this case would coincide with the infinitive
form of the verb—walk, climb, look, etc.

For more complex patterns, several variable
parts may be invoked, some of them discontinu-
ous. For example, part of an inflection paradigm
for German verbs of the type schreiben (to write)
verbs may be described as:

x1+e+x2+x3+en INFINITIVE
x1+e+x2+x3+end PRESENT PARTICIPLE
ge+x1+x2+e+x3+en PAST PARTICIPLE
x1+e+x2+x3+e PRESENT 1P SG
x1+e+x2+x3+st PRESENT 2P SG
x1+e+x2+x3+t PRESENT 3P SG

If the variables are instantiated as x1=schr,
x2=i, and x3=b, the paradigm corresponds to
the forms (schreiben, schreibend, geschrieben,
schreibe, schreibst, schreibt). If, on the other
hand, x1=l, x2=i, and x3=h, the same paradigm re-
flects the conjugation of leihen (to lend/borrow)—
(leihen, leihend, geliehen, leihe, leihst, leiht).

It is worth noting that in this representation, no
particular form is privileged in the sense that all
other forms can only be generated from some spe-
cial form, say the infinitive. Rather, in the cur-
rent representation, all forms can be derived from
knowing the variable instantiations. Also, given
only a particular word form and a hypothetical
paradigm to fit it in, the variable instantiations can
often be logically deduced unambiguously. For
example, let us say we have a hypothetical form
steigend and need to fit it in the above paradigm,
without knowing which slot it should occupy. We

LCS = schrib 
x1 = schr 
x2 = i 
x3 = b

“paradigm”

x1 x2 x3

inflection table

Generalization

Formal claim: the common parts (stem) are calculated by extracting 
the Longest Common Subsequence from related forms*

*Ahlberg, Forsberg, Hulden (2014, 2015)
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unlabeled data (Goldsmith, 2001; Schone and Ju-
rafsky, 2001; Chan, 2006; Creutz and Lagus,
2007; Monson et al., 2008). Hammarström and
Borin (2011) provides a current overview of unsu-
pervised learning.

Previous work with similar semi-supervised
goals as the ones in this paper include Yarowsky
and Wicentowski (2000), Neuvel and Fulop
(2002), Clément et al. (2004). Recent machine
learning oriented work includes Dreyer and Eis-
ner (2011) and Durrett and DeNero (2013), which
documents a method to learn orthographic trans-
formation rules to capture patterns across inflec-
tion tables. Part of our evaluation uses the same
dataset as Durrett and DeNero (2013). Eskander
et al. (2013) shares many of the goals in this paper,
but is more supervised in that it focuses on learn-
ing inflectional classes from richer annotation.

A major departure from much previous work
is that we do not attempt to encode variation
as string-changing operations, say by string edits
(Dreyer and Eisner, 2011) or transformation rules
(Lindén, 2008; Durrett and DeNero, 2013) that
perform mappings between forms. Rather, our
goal is to encode all variation within paradigms
by presenting them in a sufficiently generic fash-
ion so as to allow affixation processes, phonolog-
ical alternations as well as orthographic changes
to naturally fall out of the paradigm specification
itself. Also, we perform no explicit alignment of
the various forms in an inflection table, as in e.g.
Tchoukalov et al. (2010). Rather, we base our al-
gorithm on extracting the longest common subse-
quence (LCS) shared by all forms in an inflection
table, from which alignment of segments falls out
naturally. Although our paradigm representation
is similar to and inspired by that of Forsberg et al.
(2006) and Détrez and Ranta (2012), our method
of generalizing from inflection tables to paradigms
is novel.

3 Paradigm learning

In what follows, we adopt the view that words
and their inflection patterns can be organized
into paradigms (Hockett, 1954; Robins, 1959;
Matthews, 1972; Stump, 2001). We essentially
treat a paradigm as an ordered set of functions
(f1, . . . , fn), where fi:x1, . . . , xn 7! ⌃⇤, that is,
where each entry in a paradigm is a function from
variables to strings, and each function in a partic-
ular paradigm shares the same variables.

3.1 Paradigm representation
We represent the functions in what we call ab-
stract paradigm. In our representation, an ab-
stract paradigm is an ordered collection of strings,
where each string may additionally contain in-
terspersed variables denoted x1, x2, . . . , xn. The
strings represent fixed, obligatory parts of a
paradigm, while the variables represent mutable
parts. These variables, when instantiated, must
contain at least one segment, but may otherwise
vary from word to word. A complete abstract
paradigm captures some generalization where the
mutable parts represented by variables are instan-
tiated the same way for all forms in one particu-
lar inflection table. For example, the fairly simple
paradigm

x1 x1+s x1+ed x1+ing

could represent a set of English verb forms, where
x1 in this case would coincide with the infinitive
form of the verb—walk, climb, look, etc.

For more complex patterns, several variable
parts may be invoked, some of them discontinu-
ous. For example, part of an inflection paradigm
for German verbs of the type schreiben (to write)
verbs may be described as:

x1+e+x2+x3+en INFINITIVE
x1+e+x2+x3+end PRESENT PARTICIPLE
ge+x1+x2+e+x3+en PAST PARTICIPLE
x1+e+x2+x3+e PRESENT 1P SG
x1+e+x2+x3+st PRESENT 2P SG
x1+e+x2+x3+t PRESENT 3P SG

If the variables are instantiated as x1=schr,
x2=i, and x3=b, the paradigm corresponds to
the forms (schreiben, schreibend, geschrieben,
schreibe, schreibst, schreibt). If, on the other
hand, x1=l, x2=i, and x3=h, the same paradigm re-
flects the conjugation of leihen (to lend/borrow)—
(leihen, leihend, geliehen, leihe, leihst, leiht).

It is worth noting that in this representation, no
particular form is privileged in the sense that all
other forms can only be generated from some spe-
cial form, say the infinitive. Rather, in the cur-
rent representation, all forms can be derived from
knowing the variable instantiations. Also, given
only a particular word form and a hypothetical
paradigm to fit it in, the variable instantiations can
often be logically deduced unambiguously. For
example, let us say we have a hypothetical form
steigend and need to fit it in the above paradigm,
without knowing which slot it should occupy. We
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x1 x2 x3
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Formal claim: the common parts (stem) are calculated by extracting 
the Longest Common Subsequence from related forms*

*Ahlberg, Forsberg, Hulden (2014, 2015)
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unlabeled data (Goldsmith, 2001; Schone and Ju-
rafsky, 2001; Chan, 2006; Creutz and Lagus,
2007; Monson et al., 2008). Hammarström and
Borin (2011) provides a current overview of unsu-
pervised learning.

Previous work with similar semi-supervised
goals as the ones in this paper include Yarowsky
and Wicentowski (2000), Neuvel and Fulop
(2002), Clément et al. (2004). Recent machine
learning oriented work includes Dreyer and Eis-
ner (2011) and Durrett and DeNero (2013), which
documents a method to learn orthographic trans-
formation rules to capture patterns across inflec-
tion tables. Part of our evaluation uses the same
dataset as Durrett and DeNero (2013). Eskander
et al. (2013) shares many of the goals in this paper,
but is more supervised in that it focuses on learn-
ing inflectional classes from richer annotation.

A major departure from much previous work
is that we do not attempt to encode variation
as string-changing operations, say by string edits
(Dreyer and Eisner, 2011) or transformation rules
(Lindén, 2008; Durrett and DeNero, 2013) that
perform mappings between forms. Rather, our
goal is to encode all variation within paradigms
by presenting them in a sufficiently generic fash-
ion so as to allow affixation processes, phonolog-
ical alternations as well as orthographic changes
to naturally fall out of the paradigm specification
itself. Also, we perform no explicit alignment of
the various forms in an inflection table, as in e.g.
Tchoukalov et al. (2010). Rather, we base our al-
gorithm on extracting the longest common subse-
quence (LCS) shared by all forms in an inflection
table, from which alignment of segments falls out
naturally. Although our paradigm representation
is similar to and inspired by that of Forsberg et al.
(2006) and Détrez and Ranta (2012), our method
of generalizing from inflection tables to paradigms
is novel.

3 Paradigm learning

In what follows, we adopt the view that words
and their inflection patterns can be organized
into paradigms (Hockett, 1954; Robins, 1959;
Matthews, 1972; Stump, 2001). We essentially
treat a paradigm as an ordered set of functions
(f1, . . . , fn), where fi:x1, . . . , xn 7! ⌃⇤, that is,
where each entry in a paradigm is a function from
variables to strings, and each function in a partic-
ular paradigm shares the same variables.

3.1 Paradigm representation
We represent the functions in what we call ab-
stract paradigm. In our representation, an ab-
stract paradigm is an ordered collection of strings,
where each string may additionally contain in-
terspersed variables denoted x1, x2, . . . , xn. The
strings represent fixed, obligatory parts of a
paradigm, while the variables represent mutable
parts. These variables, when instantiated, must
contain at least one segment, but may otherwise
vary from word to word. A complete abstract
paradigm captures some generalization where the
mutable parts represented by variables are instan-
tiated the same way for all forms in one particu-
lar inflection table. For example, the fairly simple
paradigm

x1 x1+s x1+ed x1+ing

could represent a set of English verb forms, where
x1 in this case would coincide with the infinitive
form of the verb—walk, climb, look, etc.

For more complex patterns, several variable
parts may be invoked, some of them discontinu-
ous. For example, part of an inflection paradigm
for German verbs of the type schreiben (to write)
verbs may be described as:

x1+e+x2+x3+en INFINITIVE
x1+e+x2+x3+end PRESENT PARTICIPLE
ge+x1+x2+e+x3+en PAST PARTICIPLE
x1+e+x2+x3+e PRESENT 1P SG
x1+e+x2+x3+st PRESENT 2P SG
x1+e+x2+x3+t PRESENT 3P SG

If the variables are instantiated as x1=schr,
x2=i, and x3=b, the paradigm corresponds to
the forms (schreiben, schreibend, geschrieben,
schreibe, schreibst, schreibt). If, on the other
hand, x1=l, x2=i, and x3=h, the same paradigm re-
flects the conjugation of leihen (to lend/borrow)—
(leihen, leihend, geliehen, leihe, leihst, leiht).

It is worth noting that in this representation, no
particular form is privileged in the sense that all
other forms can only be generated from some spe-
cial form, say the infinitive. Rather, in the cur-
rent representation, all forms can be derived from
knowing the variable instantiations. Also, given
only a particular word form and a hypothetical
paradigm to fit it in, the variable instantiations can
often be logically deduced unambiguously. For
example, let us say we have a hypothetical form
steigend and need to fit it in the above paradigm,
without knowing which slot it should occupy. We

x1 = l 
x2 = i 
x3 = h

“paradigm”

Generalization

leihen
leihend
geliehen
leihe
leihst
leiht
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Generalization
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Figure 2: Degree of coverage with varying num-
bers of paradigms.

5 Evaluation

To evaluate the method, we have conducted three
experiments. First we repeat an experiment pre-
sented in Durrett and DeNero (2013) using the
same data and experiment setup, but with our
generalization method. In this experiment, we
are given a number of complete inflection tables
scraped from Wiktionary. The task is to recon-
struct complete inflection tables from 200 held-out
base forms. For this task, we evaluate per form
accuracy as well as per table accuracy for recon-
struction. The second experiment is the same as
the first, but with additional access to an unlabeled
text dump for the language from Wikipedia.

In the last experiment we try to mimic the situa-
tion of a linguist starting out to describe a new lan-
guage. The experiment uses a large-scale Swedish
morphology as reference and evaluates how reli-
ably a lexicon can be gathered from a word list us-
ing only a few manually specified inflection tables
generalized into abstract paradigms by our system.

5.1 Experiment 1: Wiktionary
In our first experiment we start from the inflec-
tion tables in the development and test set from
Durrett and DeNero (2013), henceforth D&DN13.
Table 3 shows the number of input tables as well
as the number of paradigms that they result in af-
ter generalization and collapsing. For all cases,
the number of output paradigms are below 10%
of the number of input inflection tables. Figure
2 shows the generalization rate achieved with the
paradigms. For instance, the 20 most common re-
sulting German noun paradigms are sufficient to
model almost 95% of the 2,564 separate inflection
tables given as input.

As described earlier, in the reconstruction task,
the input base forms are compared to the abstract

Input: Output:
Data inflection abstract

tables paradigms

DE-VERBS 1827 140
DE-NOUNS 2564 70
ES-VERBS 3855 97
FI-VERBS 7049 282
FI-NOUNS-ADJS 6200 258

Table 3: Generalization of paradigms. The num-
ber of paradigms produced from Wiktionary in-
flection tables by generalization and collapsing of
abstract paradigms.

paradigms by measuring the longest common suf-
fix length for each input base form compared to
the ones seen during training. This approach is
memory-based: it simply measures the similarity
of a given lemma to the lemmas encountered dur-
ing the learning phase. Table 4 presents our results
juxtaposed with the ones reported by D&DN13.
While scoring slightly below D&DN13 for the
majority of the languages when measuring form
accuracy, our method shows an advantage when
measuring the accuracy of complete tables. In-
terestingly, the only case where we improve upon
the form accuracy of D&DN13 is German verbs,
where we get our lowest table accuracy.

Table 4 further shows an oracle score, giv-
ing an upper bound for our method that would
be achieved if we were always able to pick the
best fitting paradigm available. This upper bound
ranges from 99% (Finnish verbs) to 100% (three
out of five tests).

5.2 Experiment 2: Wiktionary and
Wikipedia

In our second experiment, we extend the previous
experiment by adding access to a corpus. Apart
from measuring the longest common suffix length,
we now also compute the frequency of the hy-
pothetical candidate forms in every generated ta-
ble and use this to favor paradigms that generate
a large number of attested forms. For this, we
use a Wikipedia dump, from which we have ex-
tracted word-form frequencies.5 In total, the num-
ber of word types in the Wikipedia corpus was
8.9M (German), 3.4M (Spanish), 0.7M (Finnish),
and 2.7M (Swedish). Table 5 presents the results,

5The corpora were downloaded and extracted as de-
scribed at http://medialab.di.unipi.it/wiki/
Wikipedia_Extractor
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:
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) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.
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we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:
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5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind
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that are part of the longest common subsequence, which are cast as variables in the generalization, are
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the following regular expressions:
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Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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that are part of the longest common subsequence, which are cast as variables in the generalization, are
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lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
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, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:
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In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:
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4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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From paradigm to FST

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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From paradigm to FST

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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From paradigm to FST

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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“ends in v” “is always n”

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.
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x1
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x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
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peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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From paradigm to FSTx1 + i→e + x2 + iendo→ir
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.

46

x1 + i→e + x2 + iendo→ir

av
circunv
contrav
conv
dev
entrev
interv
prev
prov
rev
v
adv

n
n
n
n
n
n
n
n
n
n
n
n

av
circunv
contrav
conv
dev
entrev
interv
prev
prov
rev
v
adv

n
n
n
n
n
n
n
n
n
n
n
n

c
den
desasos
despl
fr
n
pl
r
ren
repl
restr
s
sos
an

eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg

eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg

x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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From paradigm to FST

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w
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) if the variable is assumed
to be fixed, where the w
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s are the complete
strings seen as instantiations.
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drawn from a fixed set of types, and the s
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)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s
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) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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From paradigm to FST

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:
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) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
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string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w
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) if the variable is assumed
to be fixed, where the w
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s are the complete
strings seen as instantiations.
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) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:
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5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:

45

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:
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5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:
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) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w
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s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p
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), if
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maximal length that can be assumed to be
drawn from a fixed set of types, and the s
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s
the suffixes.
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)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:

45

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:

45

0

  @ 

1  
  @ 

2< : > 

3

  

  

@ 

< : > 
  

0

  @ 

1  
  @ 

2< : > 

3

  

  

@ 

< : > 
  

0

  @ 

1  
  @ 

2< : > 

3

  

  

@ 

< : > 
  

0

  @ 

1  
  @ 

2< : > 

3

  

  

@ 

< : > 
  

0

  @ 

1  
  @ 

2< : > 

3

  

  

@ 

< : > 
  

0

  @ 

1  
  @ 

2< : > 

3

  

  

@ 

< : > 
  

0

  @ 

1  
  @ 

2< : > 

3

  

  

@ 

< : > 
  

0

  @ 

1  
  @ 

2< : > 

3

  

  

@ 

< : > 
  

0

  @ 

1  
  @ 

2< : > 

3

  

  

@ 

< : > 
  

0

  @ 

1  
  @ 

2< : > 

3

  

  

@ 

< : > 
  

x1 + i→e + x2 + iendo→ir

av
circunv
contrav
conv
dev
entrev
interv
prev
prov
rev
v
adv

n
n
n
n
n
n
n
n
n
n
n
n

av
circunv
contrav
conv
dev
entrev
interv
prev
prov
rev
v
adv

n
n
n
n
n
n
n
n
n
n
n
n

c
den
desasos
despl
fr
n
pl
r
ren
repl
restr
s
sos
an

eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg

eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
eg
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Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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we examine the whole string, and if that fails to
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find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
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1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Prioritizing analyses

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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x1 = Σ+  
x2 = Σ+

x1 = Σ* v 
x2 = n

U

unconstrained

C

constrained
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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x1 = Σ+  
x2 = Σ+

x1 = Σ* v 
x2 = n

x1 = (av|circunv|...) 
x2 = (n|n|...)
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unconstrained
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original
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constrained
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.
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The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
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O ??? ???
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U
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acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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x1 = Σ+  
x2 = Σ+

x1 = Σ* v 
x2 = n

x1 = (av|circunv|...) 
x2 = (n|n|...)

U

unconstrained

O

original

C

constrained

Combine with “priority union”:
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Prioritizing analyses

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.
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The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]
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acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
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flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.
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The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:
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5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described
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acelerir [pers=3 num=pl tense=pres mood=subj]

U
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Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Analyzer =
Combine with “priority union”:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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“ends in v” “is always n”

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described
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Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
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strained analyses, if such are possible: Original
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“ends in v” “is always n”

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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From paradigm to FST

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.
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5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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From paradigm to FST

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w
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) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.
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), if
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)⌃⇤ if only prefixes appear fixed.
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) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Language L-recall L+M-recall L/W L+M/W

nouns 95.30 95.06 2.08 9.52
German verbs 91.18 92.44 4.16 9.57

nouns+verbs 92.11 93.04 4.91 14.10

Spanish verbs 98.06 97.98 1.93 2.20

nounadj 88.69 88.48 4.10 5.30
Finnish verbs 94.52 94.47 3.77 4.60

nounadj+verbs 92.63 92.43 12.56 16.40

Table 3: The result of the unweighted evaluation, where we report separately on the recall of just the
lemma (L-recall), and the recall of the lemma and corresponding MSD (L+M-recall). Also shown are the
average number of unique lemmas returned per word form to be analyzed (L/W), and the average number
of lemmas and MSDs returned (L+M/W).

i:e/0.0 i/0.0 e:r/0.0 n:ϵ/0.0 d:ϵ/0.0 o:ϵ/0.0 ϵ:[/0.0 ϵ:type=participle/0.0 ϵ:]/0.0

x1 x2

LMx1 LMx2

Figure 4: Illustration of the coupling of language models for variables x1 and x2 to create the weighted
analyzer. Here, LM

x1 and LM

x2 illustrate a collection of states representing the language models for the
variables, inferred from variable instantiations seen in the training data.

Language Tables Paradigms

nouns 2564 70
German verbs 1827 139

nouns+verbs 4391 209

Spanish verbs 3855 96

nounadj 6200 259
Finnish verbs 7049 276

nounadj+verbs 13249 535

Table 4: Statistics on the D&DN13 train+dev sets.
Paradigms is the corresponding number of in-
duced paradigm functions.

Language Tables Unique wf’s Amb.

nouns 200 553 2.89
German verbs 200 2324 2.32

nouns+verbs 400 2877 2.43

Spanish verbs 200 10003 1.14

nounadj 200 5198 1.08
Finnish verbs 200 10466 1.03

nounadj+verbs 400 15664 1.05

Table 5: Statistics on the D&DN13 test set. Amb.
is the average number of lemma-MSD pairs per
unique word form (wf).

Language Lemma L+MSD MSD

German nouns 77.06 69.44 79.50
verbs 90.02 89.76 92.78

Spanish verbs 96.92 96.92 97.43

Finnish nounadj 70.29 69.68 91.59
verbs 90.44 90.44 98.02

Table 6: Evaluation of the weighted model (all
figures represent the recall).

ple MSDs often have the same surface form. For
example, Spanish compraba ‘bought 1P/3P’ (and
-aba suffix-bearing verbs in general) are always am-
biguous between 1st/3rd past tense. For this reason,
we calculate the recall (as opposed to accuracy) of
all the top scoring parses. The weighted system
always returns a single lemma in the evaluation. It
can, of course, produce a number of ranked analy-
ses if needed—an example of extracting the top-10
ranked analyses of a word form is given in Table 7.

7.1 Results

Table 3 shows the main results of the evaluation
of the unweighted model and Table 6 the results
of the weighted model. For the unweighted case,
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From paradigm to FST

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.
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avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:
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) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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Paradigms is the corresponding number of in-
duced paradigm functions.
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is the average number of lemma-MSD pairs per
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verbs 90.02 89.76 92.78
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Finnish nounadj 70.29 69.68 91.59
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Table 6: Evaluation of the weighted model (all
figures represent the recall).

ple MSDs often have the same surface form. For
example, Spanish compraba ‘bought 1P/3P’ (and
-aba suffix-bearing verbs in general) are always am-
biguous between 1st/3rd past tense. For this reason,
we calculate the recall (as opposed to accuracy) of
all the top scoring parses. The weighted system
always returns a single lemma in the evaluation. It
can, of course, produce a number of ranked analy-
ses if needed—an example of extracting the top-10
ranked analyses of a word form is given in Table 7.

7.1 Results

Table 3 shows the main results of the evaluation
of the unweighted model and Table 6 the results
of the weighted model. For the unweighted case,
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Example analysis (unweighted)
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Example analysis (unweighted)

x1 + i→e + x2 + iendo→ir
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Example analysis (unweighted)

x1 + i→e + x2 + iendo→ir
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Example analysis (unweighted)
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.
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Example analysis (weighted)
rank w paradigm vars lemma analyses

1 14.10 p1_abadernar (1=compr) comprar [pers=2 num=sg tense=past mood=ind]

2 18.22 p1_abadernar (1=comprast) comprastar [pers=1 num=sg tense=pres mood=sub]
comprastar [pers=3 num=sg tense=pres mood=sub]

3 23.57 p5_abogar (1=compr) comprar [pers=2 num=sg tense=past mood=ind]
4 24.58 p4_abolir (1=comprast) comprastir [pers=3 num=sg tense=pres mood=ind]
5 24.58 p8_acrecentar (1=com,2=pr) comprar [pers=2 num=sg tense=past mood=ind]
6 25.51 p37_colgar (1=c,2=mpr) comprar [pers=2 num=sg tense=past mood=ind]
7 26.20 p10_acostar (1=c,2=mpr) comprar [pers=2 num=sg tense=past mood=ind]
8 26.61 p7_acceder (1=comprast) compraster [pers=3 num=sg tense=pres mood=ind]
9 26.87 p8_acrecentar (1=comp,2=r) comprar [pers=2 num=sg tense=past mood=ind]
10 29.98 p20_cegar (1=c,2=ompr) comprar [pers=2 num=sg tense=past mood=ind]

Table 7: Weighted parsing example: top-10 ranked parses for the word form compraste ‘buy PAST’
in Spanish with weights (in effect the negative log probability), the inferred variable division, the
lemmatization, and MSDs. Lemmas and parts of the analysis that are correct are given in boldface. Note
that several paradigms can produce an entirely correct parse for a single form such as this one, even
though the paradigms would differ in other forms.

we consider the lemma-recall and lemma+MSD
recall, and also document the average number of
unique parses returned (lemma or lemma+MSD).
For the weighted model, we give the recall for all
combinations of lemma+MSD.

The weighted recall is—for obvious reasons—
consistently below the unweighted version as the
unweighted case uses the hierarchical model to
potentially return a much larger number of anal-
yses. The weighted version always returns a sin-
gle lemma, and possibly several equally ranked
MSDs, as discussed above. Still, for some lan-
guages (Spanish and Finnish verbs in particular),
despite returning only a single analysis, perfor-
mance is on par with the unweighted model, which
returns 1.93 analyses on average (Spanish) and 3.77
(Finnish). We emphasize that the test set for our
experiments is entirely disjoint from the training
set, and that the figures therefore reflect potential
performance on unseen word forms, not standard
per-token performance in running text, which is
presumably much higher. The reported figures can
thus be interpreted to correspond to a per-type per-
formance for OOV items.

8 Conclusion and future work

We have described two supervised methods for pro-
ducing finite-state models morphological analyzers
and guessers from labeled word forms, organized
into inflection tables. The method can be used to
quickly produce high-recall morphological anal-
ysis from labeled data with little or no linguistic
development effort.

These tools can be used as is and can also be

modified to exploit unlabeled data in the form of
raw text corpora in a semi-supervised lexicon ex-
pansion setting. Some potential extensions could
be of immediate value: the generative weighted
model could be combined and evaluated on a
task of tagging/disambiguating running text where
contextual features could be used and seamlessly
combined with the morphological language model.
The weighted model also offers paths for further
experimentation—for example, it is not immedi-
ately obvious that an n-gram model is the best
choice. It seems reasonable to assume that those
parts of the variables modeled that stand closer to
the fixed parts, i.e. at the edges, would be more
important in judging similarity to previously seen
inflected forms. Table 2 hints at this being the case
since, for example, the Spanish variables seem far
more constrained at edge positions than in the mid-
dle of the variable string. Which parts to weight
as more important in judging similarity could also
be inferred from data. Another potential extension
is to also constrain the analysis form by integrat-
ing a word-level language model instead of only
a variable-level one, either replacing the variable-
level model or working in conjunction with it.
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Experiments
• Complete inflection tables for various languages: 

     German verbs (1,827 tables) 
     German nouns (2,564 tables) 
     Spanish verbs (3,855 tables) 
     Finnish verbs (7,049 tables) 
     Finnish nouns/adjectives (6,200 tables)

Durrett & DeNero (2013)
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Experiments

Language L-recall L+M-recall L/W L+M/W

nouns 95.30 95.06 2.08 9.52
German verbs 91.18 92.44 4.16 9.57

nouns+verbs 92.11 93.04 4.91 14.10

Spanish verbs 98.06 97.98 1.93 2.20

nounadj 88.69 88.48 4.10 5.30
Finnish verbs 94.52 94.47 3.77 4.60

nounadj+verbs 92.63 92.43 12.56 16.40

Table 3: The result of the unweighted evaluation, where we report separately on the recall of just the
lemma (L-recall), and the recall of the lemma and corresponding MSD (L+M-recall). Also shown are the
average number of unique lemmas returned per word form to be analyzed (L/W), and the average number
of lemmas and MSDs returned (L+M/W).

Figure 4: Illustration of the coupling of language models for variables x1 and x2 to create the weighted
analyzer. Here, LM

x1 and LM

x2 illustrate a collection of states representing the language models for the
variables, inferred from variable instantiations seen in the training data.

Language Tables Paradigms

nouns 2564 70
German verbs 1827 139

nouns+verbs 4391 209

Spanish verbs 3855 96

nounadj 6200 259
Finnish verbs 7049 276

nounadj+verbs 13249 535

Table 4: Statistics on the D&DN13 train+dev sets.
Paradigms is the corresponding number of in-
duced paradigm functions.

Language Tables Unique wf’s Amb.

nouns 200 553 2.89
German verbs 200 2324 2.32

nouns+verbs 400 2877 2.43

Spanish verbs 200 10003 1.14

nounadj 200 5198 1.08
Finnish verbs 200 10466 1.03

nounadj+verbs 400 15664 1.05

Table 5: Statistics on the D&DN13 test set. Amb.
is the average number of lemma-MSD pairs per
unique word form (wf).

Language Lemma L+MSD MSD

German nouns 77.06 69.44 79.50
verbs 90.02 89.76 92.78

Spanish verbs 96.92 96.92 97.43

Finnish nounadj 70.29 69.68 91.59
verbs 90.44 90.44 98.02

Table 6: Evaluation of the weighted model (all
figures represent the recall).

ple MSDs often have the same surface form. For
example, Spanish compraba ‘bought 1P/3P’ (and
-aba suffix-bearing verbs in general) are always am-
biguous between 1st/3rd past tense. For this reason,
we calculate the recall (as opposed to accuracy) of
all the top scoring parses. The weighted system
always returns a single lemma in the evaluation. It
can, of course, produce a number of ranked analy-
ses if needed—an example of extracting the top-10
ranked analyses of a word form is given in Table 7.

7.1 Results

Table 3 shows the main results of the evaluation
of the unweighted model and Table 6 the results
of the weighted model. For the unweighted case,
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Experiments
Weighted (return single top-scoring lemma + MSD)

Language L-recall L+M-recall L/W L+M/W

nouns 95.30 95.06 2.08 9.52
German verbs 91.18 92.44 4.16 9.57

nouns+verbs 92.11 93.04 4.91 14.10

Spanish verbs 98.06 97.98 1.93 2.20

nounadj 88.69 88.48 4.10 5.30
Finnish verbs 94.52 94.47 3.77 4.60

nounadj+verbs 92.63 92.43 12.56 16.40

Table 3: The result of the unweighted evaluation, where we report separately on the recall of just the
lemma (L-recall), and the recall of the lemma and corresponding MSD (L+M-recall). Also shown are the
average number of unique lemmas returned per word form to be analyzed (L/W), and the average number
of lemmas and MSDs returned (L+M/W).

Figure 4: Illustration of the coupling of language models for variables x1 and x2 to create the weighted
analyzer. Here, LM

x1 and LM

x2 illustrate a collection of states representing the language models for the
variables, inferred from variable instantiations seen in the training data.

Language Tables Paradigms

nouns 2564 70
German verbs 1827 139

nouns+verbs 4391 209

Spanish verbs 3855 96

nounadj 6200 259
Finnish verbs 7049 276

nounadj+verbs 13249 535

Table 4: Statistics on the D&DN13 train+dev sets.
Paradigms is the corresponding number of in-
duced paradigm functions.

Language Tables Unique wf’s Amb.

nouns 200 553 2.89
German verbs 200 2324 2.32

nouns+verbs 400 2877 2.43

Spanish verbs 200 10003 1.14

nounadj 200 5198 1.08
Finnish verbs 200 10466 1.03

nounadj+verbs 400 15664 1.05

Table 5: Statistics on the D&DN13 test set. Amb.
is the average number of lemma-MSD pairs per
unique word form (wf).

Language Lemma L+MSD MSD

German nouns 77.06 69.44 79.50
verbs 90.02 89.76 92.78

Spanish verbs 96.92 96.92 97.43

Finnish nounadj 70.29 69.68 91.59
verbs 90.44 90.44 98.02

Table 6: Evaluation of the weighted model (all
figures represent the recall).

ple MSDs often have the same surface form. For
example, Spanish compraba ‘bought 1P/3P’ (and
-aba suffix-bearing verbs in general) are always am-
biguous between 1st/3rd past tense. For this reason,
we calculate the recall (as opposed to accuracy) of
all the top scoring parses. The weighted system
always returns a single lemma in the evaluation. It
can, of course, produce a number of ranked analy-
ses if needed—an example of extracting the top-10
ranked analyses of a word form is given in Table 7.

7.1 Results

Table 3 shows the main results of the evaluation
of the unweighted model and Table 6 the results
of the weighted model. For the unweighted case,
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Wrap-up

‣ Simple method to construct FST analyzers 
& guessers from labeled data

‣ Yields weighted/unweighted FSTs
‣ Robust performance for inflectional 

morphology
‣ Can also use as generator
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Thank You

Code and language data at:

https://github.com/marfors/paradigmextract/

https://github.com/marfors/paradigmextract/

