The Computational Complexity of Distinctive Feature Minimization in Phonology

Hubie Chen and Mans Hulden https://github.com/mhulden/minphonfeat()

Distinctive Features

- Phonologists treat distinctive features as fundamental atomic primitives in describing a sound or a set of sounds.
- For example, to describe a regressive nasal assimilation rule for vowels ([+syl]), phonologists would postulate something like:
- $[+syl] \rightarrow [+nas] / _ [+nas]$
- These feature descriptions are not unique, we could also say the following with the same effect:
- $[+syl] \rightarrow [+nas] / [+cons, +son, +voi, -cnt, -hi, -bk]$
- As a learning and generalization problem, it is assumed that a learner/phonologist uses the minimum required number of features to describe the relevant set (Fant, 1966; Halle, 1962 Archangeli, 1984; Hayes, 2011; Zsiga, 2012).
- If a learner has observed {m,n} being relevant to a generalization (as in the previous), phonologists tacitly assume this minimization problem is automatically solved behind the scenes

Quiz Time!

- To appreciate the potential difficulty of these questions, consider this pop quiz designed to take you back mentally to your favorite phonology class:
- (1) Can the set **{b,g}** be described exactly with the feature system below?
- (2) If so, what is the minimal description (using the smallest number of features)?

I		cons	son	syl	voi	cnt	nas	lat	ant	cor	hi	bk	10	rd
	р	+	_	_	_	_	_	_	+	_	_	_	_	_
	t	+	_	-	-	_	-	-	+	+	-	-	_	-
	k	+	-	-	-	-	-	-	-	_	╋	+	_	-
$\left(\right.$	b	+	-	-	+	_	-	-	+	-	-	-	-	-
	d	+	-	-	+	_	-	-	+	+	-	-	_	-
$\left(\right.$	g	+	-	-	+	-	-	-	-	_	+	+	-	-
	f	+	-	_	-	+	-	_	+	_	-	_	_	-
	S	+	-	-	-	+	-	-	+	+	-	-	-	-
	X	+	-	-	-	+	-	-	-	-	+	+	-	-
	V	+	-	-	+	+	-	-	+	-	-	-	-	-
	Y	+	-	-	+	+	-	-	-	-	+	+	-	-
	W	-	+	-	+	+	-	-	-	-	+	+	-	+
	j	-	+	-	+	+	-	-	-	-	+	-	-	-
	1	+	+	-	+	+	-	+	+	+	-	-	-	-
	m	+	+	-	+	-	+	-	+	-	-	-	-	-
	n	+	+	-	+	-	+	-	+	+	-	-	-	-
	a	-	+	+	+	+	-	-	-	-	-	+	+	-
	e	-	+	+	+	+	-	-	-	-	-	-	-	-
	i	-	+	+	+	+	-	-	-	-	+	-	-	-
	0	-	+	+	+	+	-	-	-	-	-	+	-	+
	U	-	+	+	+	+	-	-	-	-	+	+	-	+
	У	-	+	+	+	+	-	-	-	-	+	-	-	+
					{	b,	g}	.?						

Example Feature System

• \													
S		o rd	ok le	hi	cor	ant	lat	nas	oi cnt	syl vo	son	cons	
					_	+	_	_			_	+	p
				-	+	+	-	-	-		-	+	t
			+ -	+	-	-	-	-	-		-	+	k
_				-	-	+	-	-	-	- +	-	+	b
				-	+	+	-	-	-	- +	-	+	d
-			+ -	+	-	-	-	-	-	- +	-	+	g
				-	-	+	-	-	+		-	+	f
				-	+	+	-	-	+		-	+	S
•			+ -	+	-	-	-	-	+		-	+	X
				-	-	+	-	-	+	- +	-	+	V
			+ -	+	-	-	-	-	+	- +	-	+	V
•		- +	+ -	+	-	-	-	-	+	- +	+	-	₩ •
				+	-	-	-	-	+	- +	+	-	J
	<u>٦</u>				+	+	+	-	+		<u>+</u>	+	
					-	+	-	+	-			+	
•F	J			-	+	+	-	+			<u> </u>	+	
-		+ -	+ +		-	-	-	-	+	+ +	Ť	-	a
					-	-	-	-	+			-	e ;
			■ - ⊥	Ť	-	-	-	-	+ +			-	
•		- T _ ⊥	┬ - ⊥		_	-	_	_				_	
		- +	T -	Ť	-	-	-	-				-	
				Т	-	-	-	_				-	y

TL;DR

- The Feature description problem is in P
 - Very efficiently checkable whether a set of phonemes Q can be described with some feature system F
- The decision version of the Feature Minimization Problem is NP-complete
 - "Decision version" meaning, answer the question: "can phoneme set Q be described with k features or less?"
- The minimization version is NP-hard
 - "Minimization" being: find the minimal set of features needed to describe a set of phonemes Q
- We show this by reduction to set cover (Karp, 1972)
- In fact, we can reduce both to and from set covering to show the feature minimization problem is isomorphic to set cover

- We reduce from set cover
- **S**, such that $S_1 \cup \ldots \cup S_m = U$ (the universe)
- A set cover is sequence of sets S₁, ..., S_m drawn from
- Decide whether there exists a set cover of less than or equal to some k
- Example, **S** = {{a,b,c}, {b,d}, {c,d}, {d,e}}
- Decision Question Example: does a set cover exist if k = 2 (or less)?
- sets to a feature system which is the negation of each set, and add a fresh element x to each feature
- Answer: yes (since {a,b,c} ∪ {d,e} = {a,b,c,d,e} = U) • Main trick: given an instance of set cover, convert • Solve minphonfeat for the phoneme set $Q = \{x\}$

- Reduces to and from set cover without changing k

- $F_1 = \{d, e, x\}$
- $F_2 = \{a, c, e, x\}$
- $F_3 = \{a, b, e, x\}$
- $F_4 = \{a, b, c, x\}$

Problems

- analyze the computational complexity of two arate problems related to feature descriptions
- The feature description problem
- The feature minimization problem

ature Description

ven a set of phonemes, what is the complexity of ciding whether that set is a *natural class*? = is finable by some combination of features example, for the feature system on the left {k,b} NOT a *natural class*, while **{k,p}** is.

ature Minimization

ven a set of phonemes Q, what is the complexity of finding the minimal description for it • For example, on the right is shown the minimal description of the set $\{v, y\} = [-son, +voi, +cnt]$

Main Reduction

SETCOVERING

 $S = \{\{a,b,c\},\{b,d\},\{c,d\},\{d,e\}\}, U = \{a,b,c,d,e\}, k = 2$

		cons	son	syl	voi	cnt	nas	lat	ant	cor	hi	bk	10	r
	p	+	-	-	-	-	-	_	+	_	-	-	-	_
	t	+	-	-	-	-	-	-	+	+	-	-	-	_
	k	+	-	-	-	-	-	-	-	-	+	+	-	_
	b	+	-	-	+	-	-	-	+	-	-	-	—	-
	d	+	-	-	+	-	-	-	+	+	-	-	-	_
	g	+	-	-	+	-	-	-	-	-	+	+	-	_
	f	+	-	-	-	+	-	-	+	-	-	-	-	_
	S	+	-	-	-	+	-	-	+	+	_	-	_	-
	X	+	-	-	_	+	_	-	-	-	+	+	-	_
	\mathbf{v}	+	-	-	+	+	-	-	+	-	-	-	_	_
	V	+	-	-	+	+	-	-	-	-	+	+	-	-
1	W	-	+	-	+	+	-	-	-	-	+	+	-	-
	j	-	+	-	+	+	-	-	-	-	+	-	—	-
	1	+	+	-	+	+	-	+	+	+	-	-	-	-
	m	+	+	-	+	-	+	-	+	-	-	-	-	-
/	n	+	+	-	+	-	+	-	+	+	-	-	-	-
	a	-	+	+	+	+	-	-	-	-	-	+	+	_
	e	-	+	+	+	+	-	-	-	-	-	-	-	-
	i	-	+	+	+	+	-	-	-	-	+	-	-	_
	0	-	+	+	+	+	-	-	-	-	-	+	-	-
	u	-	+	+	+	+	-	-	-	-	+	+	-	-
	y	-	+	+	+	+	-	-	-	-	+	-	-	-

Discussion

- problematic
- structure?

 - systems)
- loosened?

University of Colorado Boulder

Example minimization

• Assuming minimal feature discovery as part of a phonological learning component or model is

• Could some fast strategy be used which would work on phoneme systems because they exhibit a special

> • We've ruled out a greedy strategy (sometimes fails in actual attested feature

> • Branch&Bound type search strategies work but the search space is still huge

• Or should the interaction between observed sounds "phonemes" and learned feature combination be

Check Quiz Answer Here!

```
(I) YES, {b,g} is a natural class!
(2) The minimal description is:
```

```
[+voi, -cnt, -nas, -cor]
          or
[-son, +voi, -cnt, -cor]
```