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languages we experiment with, the number of paradigms decreases consistently after generalization: the
average ratio between the number of generalized paradigms and the number of LCS-paradigms across
languages on this data set is 0.69 for verbs, 0.55 for nouns and adjectives, and 0.59 for all parts-of-speech
together. The ratio is higher on this data set than on the Durrett and DeNero (2013) data set because the
data size here is much smaller, and yields fewer paradigms in general.

LANGUAGE POS TABLE COUNT TABLE SIZE PARADIGM COUNT GENERALIZED PARADIGM COUNT

FINNISH NOUN & ADJ 6,400 28 259 40
FINNISH VERB 7,249 53 276 30
GERMAN NOUN 2,764 8 70 26
GERMAN VERB 2,027 27 135 107
SPANISH VERB 4,055 57 96 26

Table 2: Data sets by Durrett and DeNero (2013). We show counts of inflection tables and inflection
table sizes for nouns, adjectives and verbs. Additionally, we show the number of paradigms found
the LCS method (Ahlberg et al., 2014) and the resulting number of ‘generalized paradigms’ found by
subsequently applying our method.

An example of how generalization over paradigms collapses them and catches regularities from the
CoNLL-SIGMORPHON data set can be found by examining English verbal inflections. Different
paradigms are extracted from verbs like contest, establish, benefit, occur and bag, though the paradigm
for establish differs from that for contest only in the present tense for the third-person singular, with the
last variable as -es for establish, but -s for contest; the paradigms for benefit, occur and bag differ from
that of contest in the present participle, past participle and past tense, for which the last variables for
benefit, occur and bag are -ting, -ring and -ging (for the present participle) and -ted, -red and -ged (for
the past participle and past tense) respectively, but -ing and -ed for contest. The generalized paradigm
approach groups all these patterns together, which completely agrees with the linguistic regularity.

5 Learning Full Paradigms from Partial Paradigms

In this section we present an algorithm for learning full morphological paradigms given partial inflection
tables. Our algorithm takes as input a set of partial inflection tables, that is, inflection tables with a
number of missing forms. It first derives a morphological LCS-paradigm for each partial inflection table
and then imputes missing form patterns into the paradigm. At test time, form patterns are substituted by
concrete word forms (see Figure 4a). A key component of the proposed algorithm is a stem sampling
step which counteracts bad hypotheses about stems caused by missing information when performing
paradigm extraction on only partial inflection tables.

V;INF speak
V;PRES ?
V;PAST ?
V;PAST;PCPLE spoken
V;PRES;PCPLE ?

=)

V;INF speak
V;PRES speaks
V;PAST spoke
V;PAST;PCPLE spoken
V;PRES;PCPLE speaking

(a) Our inputs are partial inflection tables and the final
outputs are completed inflection tables.

V;INF -
V;PRES -
V;PAST -
V;PAST;PCPLE eaten
V;PRES;PCPLE eating

=)

V;INF -
V;PRES -
V;PAST -
V;PAST;PCPLE x1+e+x2

V;PRES;PCPLE x1+i+x2+g

(b) Paradigm extraction is applied to a partial inflection
table. The stem is incorrectly identified as eatn. This
makes it impossible to correctly infer the infinitive eat
and past tense ate.

Figure 4: We illustrate the paradigm cell filling task in 4a and show an example of over-generalization
effects due to data sparsity in 4b.

We evaluate the presented algorithm with regard to its ability to reconstruct missing forms in partial
paradigms and compare it against two baselines: majority voting and matrix completion. Our experi-
ments demonstrate that the proposed algorithm delivers clear improvements over the baselines.

5.1 Methods
As mentioned above, our input consists of partial inflection tables. The first step is to apply the LCS
procedure for paradigm extraction (Ahlberg et al., 2014) presented in Section 1. This results in a partial
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Table 2: Data sets by Durrett and DeNero (2013). We show counts of inflection tables and inflection
table sizes for nouns, adjectives and verbs. Additionally, we show the number of paradigms found
the LCS method (Ahlberg et al., 2014) and the resulting number of ‘generalized paradigms’ found by
subsequently applying our method.

An example of how generalization over paradigms collapses them and catches regularities from the
CoNLL-SIGMORPHON data set can be found by examining English verbal inflections. Different
paradigms are extracted from verbs like contest, establish, benefit, occur and bag, though the paradigm
for establish differs from that for contest only in the present tense for the third-person singular, with the
last variable as -es for establish, but -s for contest; the paradigms for benefit, occur and bag differ from
that of contest in the present participle, past participle and past tense, for which the last variables for
benefit, occur and bag are -ting, -ring and -ging (for the present participle) and -ted, -red and -ged (for
the past participle and past tense) respectively, but -ing and -ed for contest. The generalized paradigm
approach groups all these patterns together, which completely agrees with the linguistic regularity.

5 Learning Full Paradigms from Partial Paradigms

In this section we present an algorithm for learning full morphological paradigms given partial inflection
tables. Our algorithm takes as input a set of partial inflection tables, that is, inflection tables with a
number of missing forms. It first derives a morphological LCS-paradigm for each partial inflection table
and then imputes missing form patterns into the paradigm. At test time, form patterns are substituted by
concrete word forms (see Figure 4a). A key component of the proposed algorithm is a stem sampling
step which counteracts bad hypotheses about stems caused by missing information when performing
paradigm extraction on only partial inflection tables.
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Figure 4: We illustrate the paradigm cell filling task in 4a and show an example of over-generalization
effects due to data sparsity in 4b.

We evaluate the presented algorithm with regard to its ability to reconstruct missing forms in partial
paradigms and compare it against two baselines: majority voting and matrix completion. Our experi-
ments demonstrate that the proposed algorithm delivers clear improvements over the baselines.

5.1 Methods
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1. We investigate PCFP in 
three different settings. 

2. We present two neural 
models for the PCFP 
task. 

3. We present new data 
sets for PCFP.
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- In the n > 1 and “frequent words” settings we 
train a LSTM encoder-decoder model with 
attention.

- In the n = 1 setting, we apply adaptive 
character dropout and then train an encoder-
decoder.
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PAST forms:
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heard
missed
loved
ate
taped

ed

ed
ed

ed

t
d

- We train a character 
language model for 
each label (INF, 
PRES, PAST,…)

- Language model 
confidence is used 
for identifying word 
stems and affixes.
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augšanai   N,DAT,SG
augšanā    N,LOC,SG
augšana    N,NOM,SG
augšana    N,VOC,SG
augšanas   N,GEN,SG
augšanu    N,ACC,SG
augšanu    N,INST,SG

augšanu+N,ACC,SG+N,DAT,SG  ! augšanai
augšanai+N,DAT,SG+N,ACC,SG ! augšanu

Figure 2: Partial inflection table for the Latvian noun au-
gana ’growth’. From a partial inflection table with two given
forms, we get two training examples. With n given forms in
a table, we hence produce n(n� 1) training examples.

si l e y d es s ä
stem

g e r a m m t
r e s i g n e r

0.000.250.751.00 0.50

Figure 3: Language model confidences for a Finnish noun
(singular inessive of sileys ’smoothness’), a German past par-
ticiple (of rammen ’to ram’) and a French verb (infinitive
form of resigner ’to resign’). The figure demonstrates that
confidence is higher in the inflectional affixes than in the stem
in general. It is also high at the stem-affix boundary.

The idea for our approach in case n = 1 is
to first learn to segment word forms into a stem
and an affix, for example walk+ed. We then hide
the affix in the input form and learn to inflect. In
other words, we map the word form walked into
walk$$ and then learn a mapping walk$$+PAST
7! walked. This model suffers less from over-
fitting and we can use it to find missing forms in
partial inflection tables.

Since we do not have access to segmented train-
ing data, we cannot directly train a segmentation
model. Instead, we use the forms in the train-
ing data to train an LSTM language model con-
ditioned on morphological tags. We then use the
language model for identifying which characters
belong to stems and which characters belong to
affixes.

As shown in Figure 3, the language model in
general gives higher confidence for predictions of
characters in the affix than in the word stem. Nev-
ertheless, it only gives a probabilistic segmenta-
tion into a stem and affix(es). Therefore, we do
not perform a deterministic segmentation. Instead
we use the language model to guide a character
dropout mechanism in our word inflection model.
When the language model is very confident, as in
the case of affix characters, we frequently drop
characters. In contrast, when the language model

Our baseline Malouf (2017)

FINNISH NOUNS 99.50 99.27 ±0.09
FRENCH VERBS 99.88 99.92± 0.02
IRISH NOUNS 85.11 85.69 ±1.71
KHALING VERBS 99.66 99.29 ±0.08
MALTESE VERBS 98.65 98.93 ±0.32
P. CHINANTEC VERBS 91.16 91.20 ±0.97
RUSSIAN NOUNS 95.90 96.34 ±0.96

Table 1: We reproduce experiments in Malouf (2017) using
our own implementation of the model. In contrast to Malouf
(2017), who used cross-validation, we train one system for
each language. Therefore, we only report standard deviation
for the results in Column 2.

is less confident, as in the case of stem characters,
we typically keep the character. Apart from this
adaptive dropout applied during training, our in-
flection system in case n = 1 is exactly the same
as in case n > 1.

More precisely, given an input word form,
which is a sequence of characters x = x1, ..., x

T

,
the LSTM language model emits a probabil-
ity p(x

t+1,ht,Ext ,Ey

) for the next character
x

t+1 based on the entire previous input sequence
x1, ..., xt. Here ht is the hidden state vector of
the language model at position t, E a joint tag
and character embedding and y the morphologi-
cal tag of the input word form. The embedding
vector E

y

is in fact a sum of sub-tag embeddings.
For example, EPAST+PCPLE denotes EPAST+EPCPLE.
This allows us to handle combinations of sub-
tags which we have not seen in the training data.
Guided by the language model, we replace in-
put characters x

t+1 during training of the rein-
flection system with a dropout character $ with
probability equal to language model confidence
p(x

t+1,ht,Ext ,Ey

).4

Baseline Model As a baseline model, we use the
neural system presented by Malouf (2016, 2017)
for solving PCFP. It is an LSTM generator which
is conditioned on the table number of the partial
inflection tables and the morphological tag index.
The model is trained to generate training word
forms in inflection tables. During testing, it can
then generate missing forms by conditioning on
morphological tags for the missing forms.

In order to assure fair comparison, we perform
the paradigm completion experiment described in
Malouf (2017), where 90% of the word forms in
the data set is used for training and the remaining
10% for testing. 5 As the results in Table 1 show,

4In practice, we pad input forms with end-of-sequence
characters in order to be able to drop x1 if needed.

5We perform the the experiments on the original data sets,

Language Model 
Confidences

13

Confidence for predicting character     based on                  :xt x1, ..., xt�1

g e r a m m t

STEM

German  
“rammed”



An Encoder-Decoder Approach to PCFP                        EMNLP 2018

augšanai   N,DAT,SG
augšanā    N,LOC,SG
augšana    N,NOM,SG
augšana    N,VOC,SG
augšanas   N,GEN,SG
augšanu    N,ACC,SG
augšanu    N,INST,SG

augšanu+N,ACC,SG+N,DAT,SG  ! augšanai
augšanai+N,DAT,SG+N,ACC,SG ! augšanu

Figure 2: Partial inflection table for the Latvian noun au-
gana ’growth’. From a partial inflection table with two given
forms, we get two training examples. With n given forms in
a table, we hence produce n(n� 1) training examples.

si l e y d es s ä
stem

g e r a m m t
r e s i g n e r

0.000.250.751.00 0.50

Figure 3: Language model confidences for a Finnish noun
(singular inessive of sileys ’smoothness’), a German past par-
ticiple (of rammen ’to ram’) and a French verb (infinitive
form of resigner ’to resign’). The figure demonstrates that
confidence is higher in the inflectional affixes than in the stem
in general. It is also high at the stem-affix boundary.

The idea for our approach in case n = 1 is
to first learn to segment word forms into a stem
and an affix, for example walk+ed. We then hide
the affix in the input form and learn to inflect. In
other words, we map the word form walked into
walk$$ and then learn a mapping walk$$+PAST
7! walked. This model suffers less from over-
fitting and we can use it to find missing forms in
partial inflection tables.

Since we do not have access to segmented train-
ing data, we cannot directly train a segmentation
model. Instead, we use the forms in the train-
ing data to train an LSTM language model con-
ditioned on morphological tags. We then use the
language model for identifying which characters
belong to stems and which characters belong to
affixes.

As shown in Figure 3, the language model in
general gives higher confidence for predictions of
characters in the affix than in the word stem. Nev-
ertheless, it only gives a probabilistic segmenta-
tion into a stem and affix(es). Therefore, we do
not perform a deterministic segmentation. Instead
we use the language model to guide a character
dropout mechanism in our word inflection model.
When the language model is very confident, as in
the case of affix characters, we frequently drop
characters. In contrast, when the language model

Our baseline Malouf (2017)

FINNISH NOUNS 99.50 99.27 ±0.09
FRENCH VERBS 99.88 99.92± 0.02
IRISH NOUNS 85.11 85.69 ±1.71
KHALING VERBS 99.66 99.29 ±0.08
MALTESE VERBS 98.65 98.93 ±0.32
P. CHINANTEC VERBS 91.16 91.20 ±0.97
RUSSIAN NOUNS 95.90 96.34 ±0.96

Table 1: We reproduce experiments in Malouf (2017) using
our own implementation of the model. In contrast to Malouf
(2017), who used cross-validation, we train one system for
each language. Therefore, we only report standard deviation
for the results in Column 2.

is less confident, as in the case of stem characters,
we typically keep the character. Apart from this
adaptive dropout applied during training, our in-
flection system in case n = 1 is exactly the same
as in case n > 1.

More precisely, given an input word form,
which is a sequence of characters x = x1, ..., x

T

,
the LSTM language model emits a probabil-
ity p(x

t+1,ht,Ext ,Ey

) for the next character
x

t+1 based on the entire previous input sequence
x1, ..., xt. Here ht is the hidden state vector of
the language model at position t, E a joint tag
and character embedding and y the morphologi-
cal tag of the input word form. The embedding
vector E

y

is in fact a sum of sub-tag embeddings.
For example, EPAST+PCPLE denotes EPAST+EPCPLE.
This allows us to handle combinations of sub-
tags which we have not seen in the training data.
Guided by the language model, we replace in-
put characters x

t+1 during training of the rein-
flection system with a dropout character $ with
probability equal to language model confidence
p(x

t+1,ht,Ext ,Ey

).4

Baseline Model As a baseline model, we use the
neural system presented by Malouf (2016, 2017)
for solving PCFP. It is an LSTM generator which
is conditioned on the table number of the partial
inflection tables and the morphological tag index.
The model is trained to generate training word
forms in inflection tables. During testing, it can
then generate missing forms by conditioning on
morphological tags for the missing forms.

In order to assure fair comparison, we perform
the paradigm completion experiment described in
Malouf (2017), where 90% of the word forms in
the data set is used for training and the remaining
10% for testing. 5 As the results in Table 1 show,

4In practice, we pad input forms with end-of-sequence
characters in order to be able to drop x1 if needed.

5We perform the the experiments on the original data sets,

Language Model 
Confidences
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Characters belonging to the word stem typically 
have low language model confidence.

Confidence for predicting character     based on                  :xt x1, ..., xt�1

g e r a m m t

STEM

German  
“rammed”
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During training we drop characters from the input 
form based on LMPAST confidence:

walked+PAST



An Encoder-Decoder Approach to PCFP                        EMNLP 2018

Adaptive Character Dropout

14

During training we drop characters from the input 
form based on LMPAST confidence:

walked+PAST==



An Encoder-Decoder Approach to PCFP                        EMNLP 2018

Adaptive Character Dropout

15

During training we drop characters from the input 
form based on LMPAST confidence:

walked+PAST==

Because it is problematic to determine which  
characters belong to the stem, we drop characters 

probabilistically.
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Training Examples Before 
Character Dropout
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résigner>INF -> résigner
résigner>INF -> résigner
résigner>INF -> résigner
résigner>INF -> résigner
résigner>INF -> résigner
résigner>INF -> résigner
résigner>INF -> résigner
résigner>INF -> résigner
résigner>INF -> résigner
résigner>INF -> résigner French 

“resign”
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Training Examples After 
Character Dropout
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ré#i####>INF -> résigner
r#s#####>INF -> résigner
rés#g###>INF -> résigner
résign##>INF -> résigner
résig###>INF -> résigner
rési####>INF -> résigner
rési####>INF -> résigner
rési####>INF -> résigner
rés#g#e#>INF -> résigner
résig###>INF -> résigner French 

“resign”
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Data Used in Experiments

18

We present experiments for noun and verb tables for: 
Finnish, French, Georgian, German, Latin, Latvian, 
Spanish and Turkish.
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Conclusions & Future Work
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- We can learn inflectional morphology even when 
only given one example per lexeme. 

- If every table has two or more forms, accuracy is 
around 90%. 

- Predicting rare forms based on frequent ones is 
difficult. 

- Future work: Need more realistic data set for the L1 
learning scenario.
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Thank you!


