

An Encoder-Decoder Approach to the Paradigm Cell-Filling Problem

Miikka Silfverberg

University of Helsinki University of Colorado Mans Hulden University of Colorado

Paradigm Cell-Filling Problem

Partial inflection table

V;INF	speak
V;PRES	?
V;PAST	?
V;PAST;PCPLE	spoken
V;PRES;PCPLE	?

Farrell Ackerman, James P. Blevins, and Robert Malouf. 2009. Parts and wholes: Implicative patterns in inflectional paradigms. In James P. Blevins and Juliette Blevins, editors, *Analogy in Grammar*, pages 54–82. Oxford University Press.

Paradigm Cell-Filling Problem

Partial inflection table

Completed inflection table

V;INF	speak		V;INF	speak
V;PRES	?		V;PRES	speaks
V;PAST	?	\implies	V;PAST	spoke
V;PAST;PCPLE	spoken		V;PAST;PCPLE	spoken
V;PRES;PCPLE	?		V;PRES;PCPLE	speaking

Farrell Ackerman, James P. Blevins, and Robert Malouf. 2009. Parts and wholes: Implicative patterns in inflectional paradigms. In James P. Blevins and Juliette Blevins, editors, *Analogy in Grammar*, pages 54–82. Oxford University Press.

Paradigm Cell-Filling Problem

koirakaan, koirankaan, koiraakaan, koirassakaan, koirastakaan, koiraankaan, koirallakaan, koiraltakaan, koirallekaan, koiranakaan, koiraksikaan, koirattakaan, koirineenkaan, koirinkaan, koirako, koiranko, koiraako, koirassako, koirastako, koiraanko, koirallako, koiraltako, koiralleko, koiranako, koiraksiko, koirattako, koirineenko, koirinko, koirasikaan, koiranikaan, koiransakaan, koirammekaan, koirannekaan, koiraanikaan, koiraasikaan, koiraansakaan, koiraammekaan, koiraannekaan, koirassanikaan, koirassasikaan, koirassansakaan, koirassammekaan, koirassannekaan, koirastanikaan, koirastasikaan, koirastansakaan, koirastammekaan, koirastannekaan, koirallanikaan, koirallasikaan, koirallansakaan, koirallammekaan, koirattannekaan, koirananikaan, koiranasikaan, koiranansakaan, koiranammekaan, koiranannekaan, koirattansakaan, koirattannekaan, koirattannekaan, koiranasikaan, koiranansakaan, koirattanikaan, koirattasikaan, koirattansakaan, koirattammekaan, koirattannekaan, koirinenikaan, koirinesikaan, koirattanikaan, koirattasikaan,

koirinennekaan, koirasiko, koiraniko, koiransake koiraammeko, koiraanneko, koirassaniko, koirastaniko, koirastasiko, koirastansa koirallansako, koirallammeko, koira koirakseniko, koiraksesiko, koiraks koirattammeko, koirattanneko, ko koirinenneko, koirasikaanko, ko koirannekaanko, koiraanikaank koiraannekaanko, koirassanika koirassammekaanko, koirassan koirastansakaanko, koirastamm koirallasikaanko, koirallansaka koirananikaanko, koiranasikaan koiranannekaanko, koiraksenika koiraksemmekaanko, koiraksenne koirattammekaanko, koirattanneka koirinemmekaanko, koirinennekaan koirammekokaan, koirannekokaan, ko koiraannekokaan, koirassanikokaan, koira koirastanikokaan, koirastasikokaan, koirastansakokaa

niranneko, koiraaniko, koiraasiko, koiraansako, irassansako, koirassammeko, koirassanneko, rastanneko, koirallaniko, koirallasiko, ansako, koiranammeko, koirananneko, rattaniko, koirattasiko, koirattansako, iko, koirinensako, koirinemmeko, nsakaanko, koirammekaanko, o, koiraansakaanko, koiraammekaanko, asikaanko, koirassansakaanko, oirastanikaanko, koirastasikaanko, astannekaanko, koirallanikaanko, lammekaanko, koirallannekaanko, ansakaanko, koiranammekaanko, sesikaanko, koiraksensakaanko, hikaanko, koirattasikaanko, koirattansakaa hikaanko, koirinesikaanko, koirinensakaanl Skaan, koiranikokaan, koiransakokaan, n, koiraansakokaan, koiraammekokaan, kokaan, koirassammekokaan, koirassannekokaa - nekokaan, koirastannekokaan, koirallanikokaan,

koirallasikokaan, koirallansakokaan, koirallammekokaan, koirallannekokaan, koirananikokaan, koiranasikokaan, koiranansakokaan, koiranammekokaan, koiranannekokaan, koiraksenikokaan, koiraksesikokaan, koiraksensakokaan, koiraksemmekokaan, koiraksennekokaan, koirattanikokaan, koirattasikokaan, koirattansakokaan, koirattammekokaan, koirattannekokaan, koirinenikokaan, koirinesikokaan, koirinensakokaan, koirinemmekokaan...

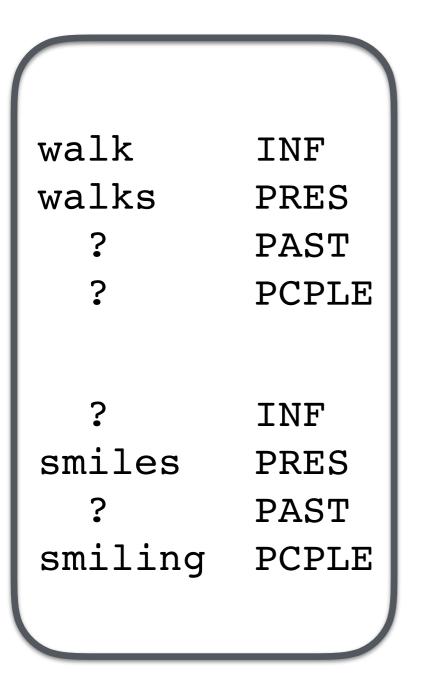
https://herrkramski.wordpress.com/2014/11/06/finnish-is-not-a-hard-language-pt-1/

An Encoder-Decoder Approach to PCFP

Finnish

Contribution

- 1. We investigate PCFP in three different settings.
- 2. We present two neural models for the PCFP task.
- 3. We present new data sets for PCFP.



n > 1

n > 1

n = 1

walk	INF	?	INF
walks	PRES	?	PRES
?	PAST	walked	PAST
?	PCPLE	?	PCPLE
? smiles	INF PRES	? smiles	INF PRES
SUITTER			
	PAST	?	PAST
smiling	PCPLE	?	PCPLE

n > 1

n = 1

by frequency

walk	INF	?	INF	walk	INF
walks	PRES	?	PRES	walks	PRES
?	PAST	walked	PAST	?	PAST
?	PCPLE	?	PCPLE	walking	PCPLE
?	INF	?	INF	smile	INF
smiles	PRES	smiles	PRES	smiles	PRES
?	PAST	?	PAST	?	PAST
smiling	PCPLE	?	PCPLE	?	PCPLE

General Approach

 In the n > 1 and "frequent words" settings we train a LSTM encoder-decoder model with attention.

General Approach

 In the n > 1 and "frequent words" settings we train a LSTM encoder-decoder model with attention.

General Approach

- In the n > 1 and "frequent words" settings we train a LSTM encoder-decoder model with attention.
- In the n = 1 setting, we apply adaptive character dropout and then train an encoderdecoder.

walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

Input

Output

walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

Input

Output

walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

Input

walk

Output

walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

Input walk+INF Output

walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

Input Output walk+INF>PRES

walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

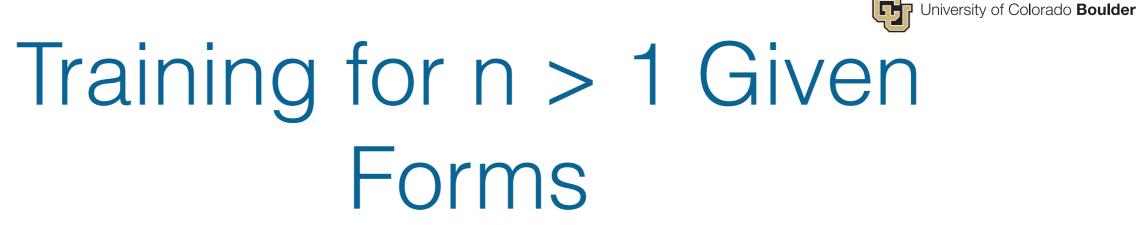
Input Output walk+INF>PRES walks

walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

Input	Output
walk+INF>PRES	walks
walks+PRES>TNF	walk

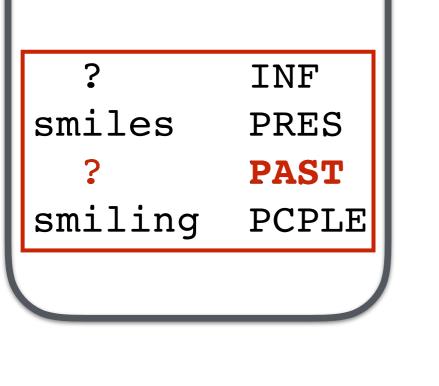
walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

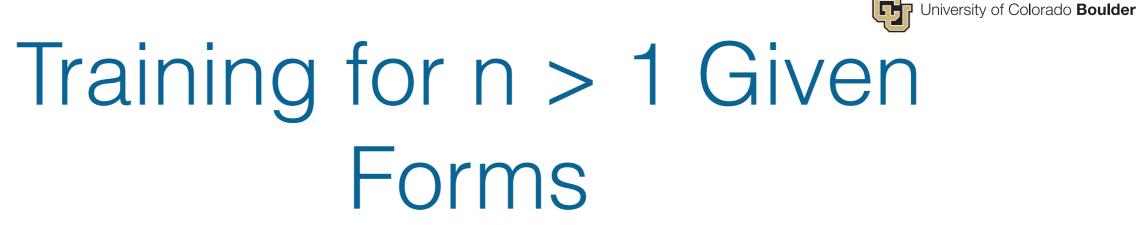
Input	Output
walk+INF>PRES	walks
walks+PRES>INF	walk
smiles+PRES>PCPLE	smiling
smiling+PCPLE>PRE	S smiles



walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

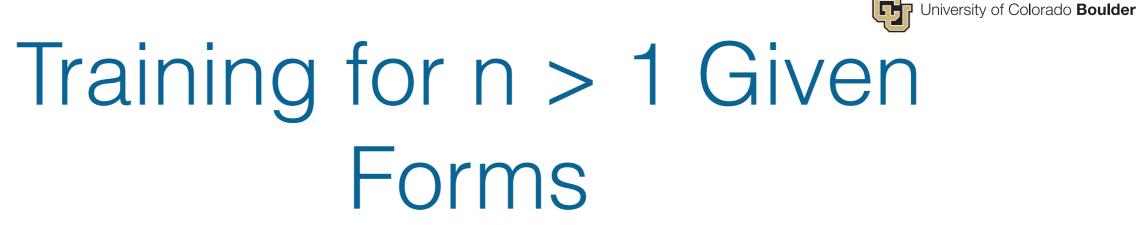
Input	Output
walk+INF>PRES	walks
walks+PRES>INF	walk
smiles+PRES>PCPLE	smiling
smiling+PCPLE>PRE	S smiles




walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

Input	Output	
walk+INF>PRES	walks	
walks+PRES>INF	walk	
smiles+PRES>PCPL	E smiling	•
smiling+PCPLE>PR	RES smiles	

smiles+PRES>PAST ? smiling+PCPLE>PAST ?



	Input	Output	
	walk+INF>PRES	walks	
s	walks+PRES>INF	walk	
	smiles+PRES>PCPI	LE smilir	ng
LE	smiling+PCPLE>PI	RES smiles	5

smiles+PRES>PAST	smiled
smiling+PCPLE>PAST	smiled

walk	INF
walks	PRES
?	PAST
?	PCPLE
?	INF
smiles	PRES
?	PAST
smiling	PCPLE

		Inpu
walk	INF	walk+IN
walks	PRES	walks+PI
?	PAST	smiles+1
?	PCPLE	smiling
?	INF	
smiles	PRES	smiles+1
smiled	PAST	smiling-
smiling	PCPLE	↓ ↓
		smiled

Input	Output
walk+INF>PRES	walks
walks+PRES>INF	walk
smiles+PRES>PCP	LE smiling
smiling+PCPLE>P	RES smiles

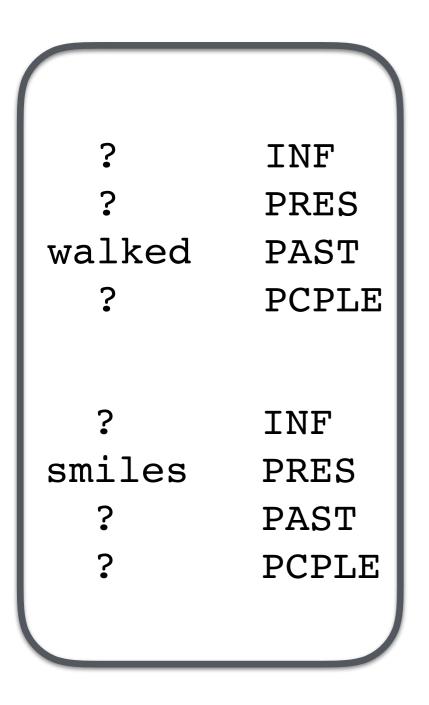
smiles+PRES>PAST smiled
smiling+PCPLE>PAST smiled
↓
smiled

	Input	Output
INF	walk+INF>PRES	walks
PRES	walks+PRES>INF	walk
PAST	smiles+PRES>PCPI	LE smiling
PCPLE	smiling+PCPLE>PI	RES smiles
INF	smiles+PRES>PAS	r smiled

smiled

smiles+PRES>PAST	smiled
smiling+PCPLE>PAST	smiled

Katharina Kann and Hinrich Schütze. 2016. Singlemodel encoder-decoder with explicit morphological representation for reinflection. In *Proceedings of the* 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 555–560, Berlin, Germany. Association for Computational Linguistics.

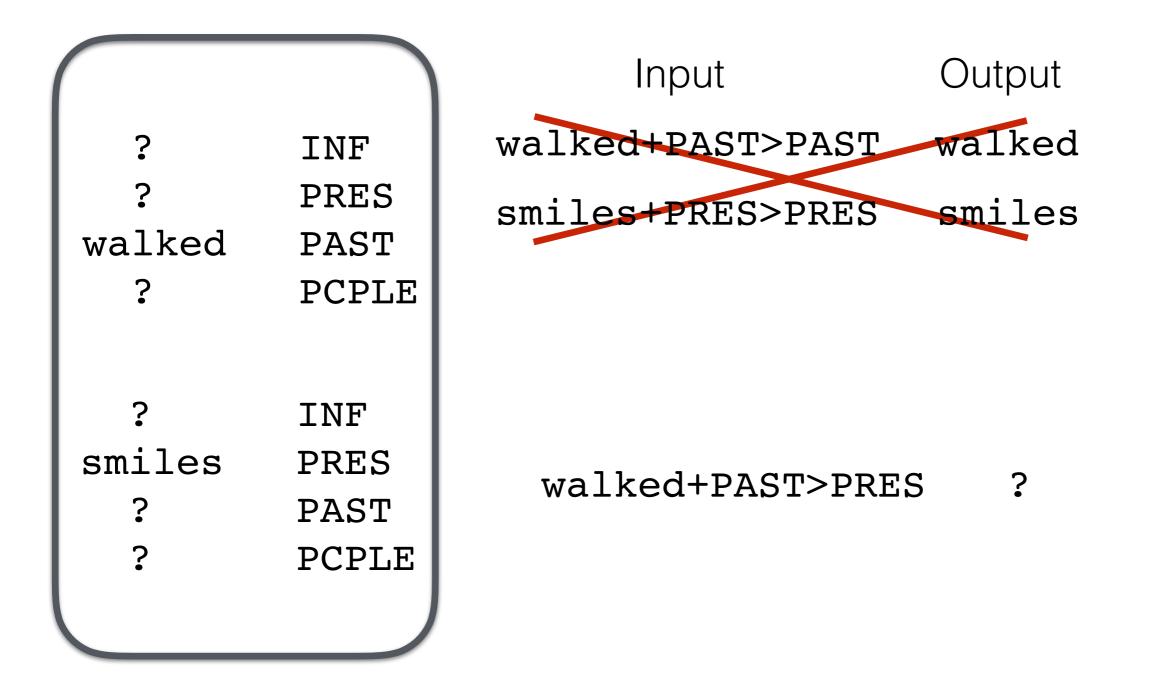

walk walks ? ? smiles PRES PAST smiled smiling PCPLE

An Encoder-Decoder Approach to PCFP

EMNLP 2018

Input

		Input	Output
?	INF	walked+PAST>PAST	walked
? walked ?	PRES PAST PCPLE	smiles+PRES>PRES	smiles
? smiles ? ?	INF PRES PAST PCPLE		

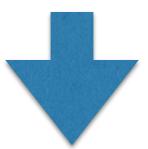


		Input	Output
?	INF	walked+PAST>PAST	walked
? walked ?	PRES PAST PCPLE	smiles+PRES>PRES	smiles
? smiles ? ?	INF PRES PAST PCPLE	walked+PAST>PRES	5?

What about Stemming?

walked+PAST>PAST walked smiles+PRES>PRES smiles

What about Stemming?


walked+PAST>PAST walked
smiles+PRES>PRES smiles

What about Stemming?

walked+PAST>PAST walked smiles+PRES>PRES smiles

walk>PAST walked smile>PRES smiles

An Encoder-Decoder Approach to PCFP

EMNLP 2018

PAST forms:

walked slept heard missed loved ate taped

An Encoder-Decoder Approach to PCFP

PAST forms:

walked slept heard missed loved ate taped

An Encoder-Decoder Approach to PCFP

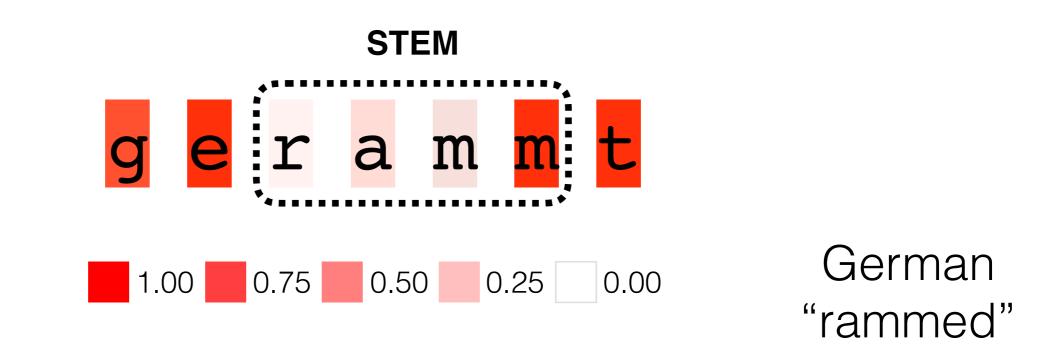
PAST forms:

walked
slept
heard
missed
loved
ate
taped

 We train a character language model for each label (INF, PRES, PAST,...)

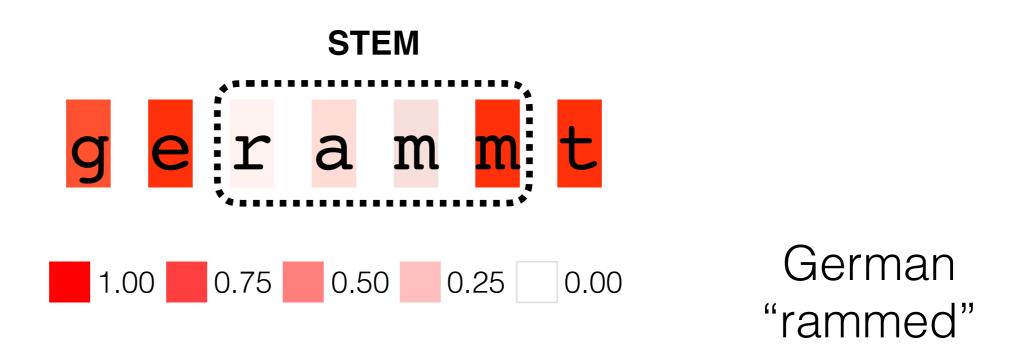
An Encoder-Decoder Approach to PCFP

EMNLP 2018


PAST forms:

walked
slept
heard
missed
loved
ate
taped

- We train a character language model for each label (INF, PRES, PAST,...)
- Language model confidence is used for identifying word stems and affixes.


Language Model Confidences

Confidence for predicting character x_t based on $x_1, ..., x_{t-1}$:

Language Model Confidences

Confidence for predicting character x_t based on $x_1, ..., x_{t-1}$:

Characters belonging to the word stem typically have **low** language model confidence.

Adaptive Character Dropout

During training we drop characters from the input form based on LM_{PAST} confidence:

walked+PAST

Adaptive Character Dropout

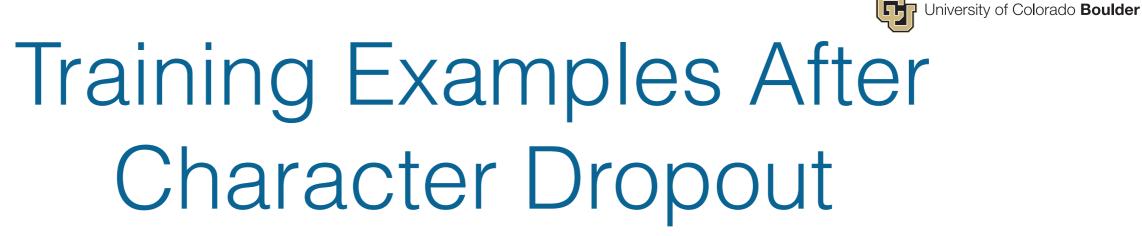
During training we drop characters from the input form based on LM_{PAST} confidence:

Adaptive Character Dropout

During training we drop characters from the input form based on LM_{PAST} confidence:

walk +PAST

Because it is problematic to determine which characters belong to the stem, we drop characters probabilistically.



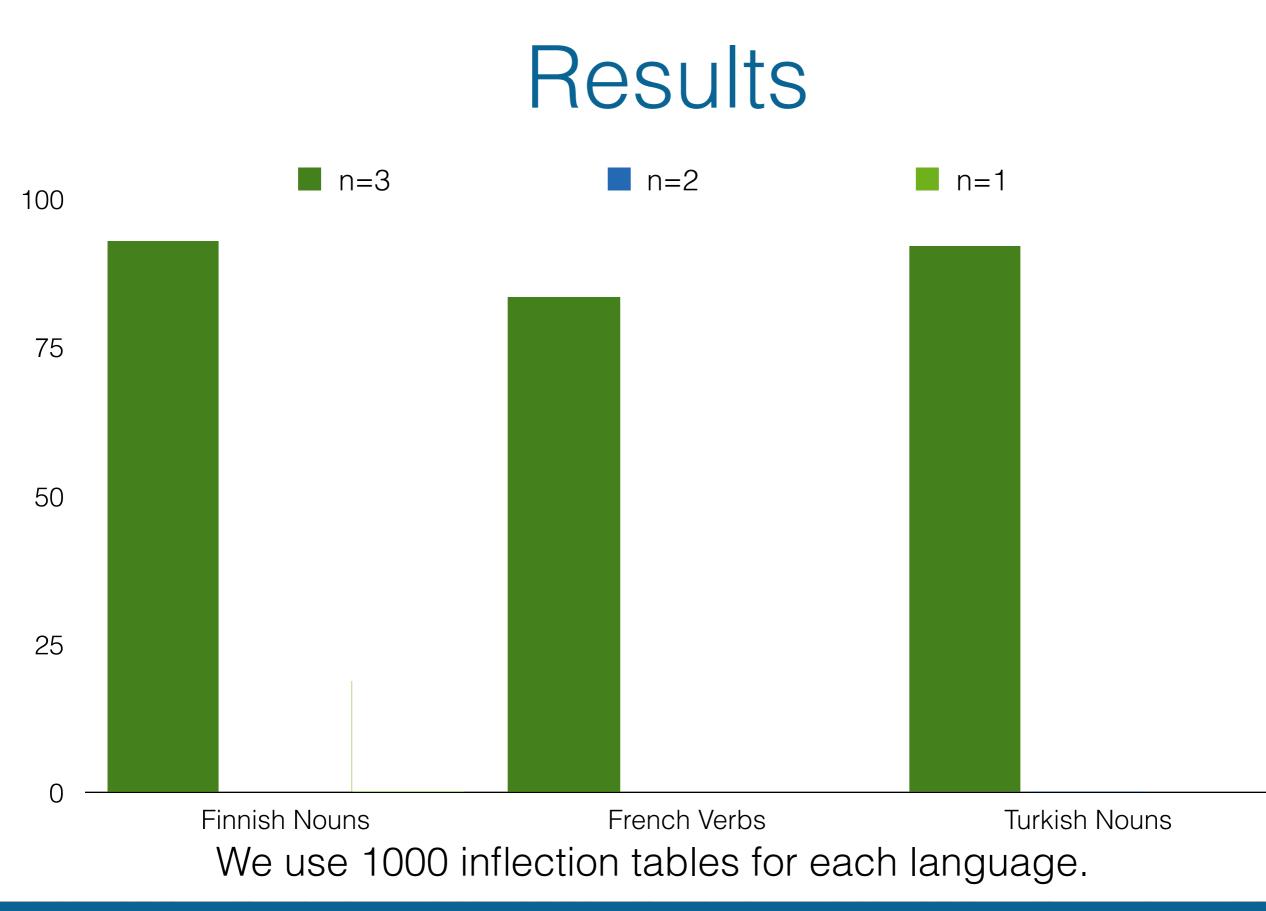
résigner>INF -> résigner résigner>INF -> résigner

French "resign"

Iniversity of Colorado **Boulder**

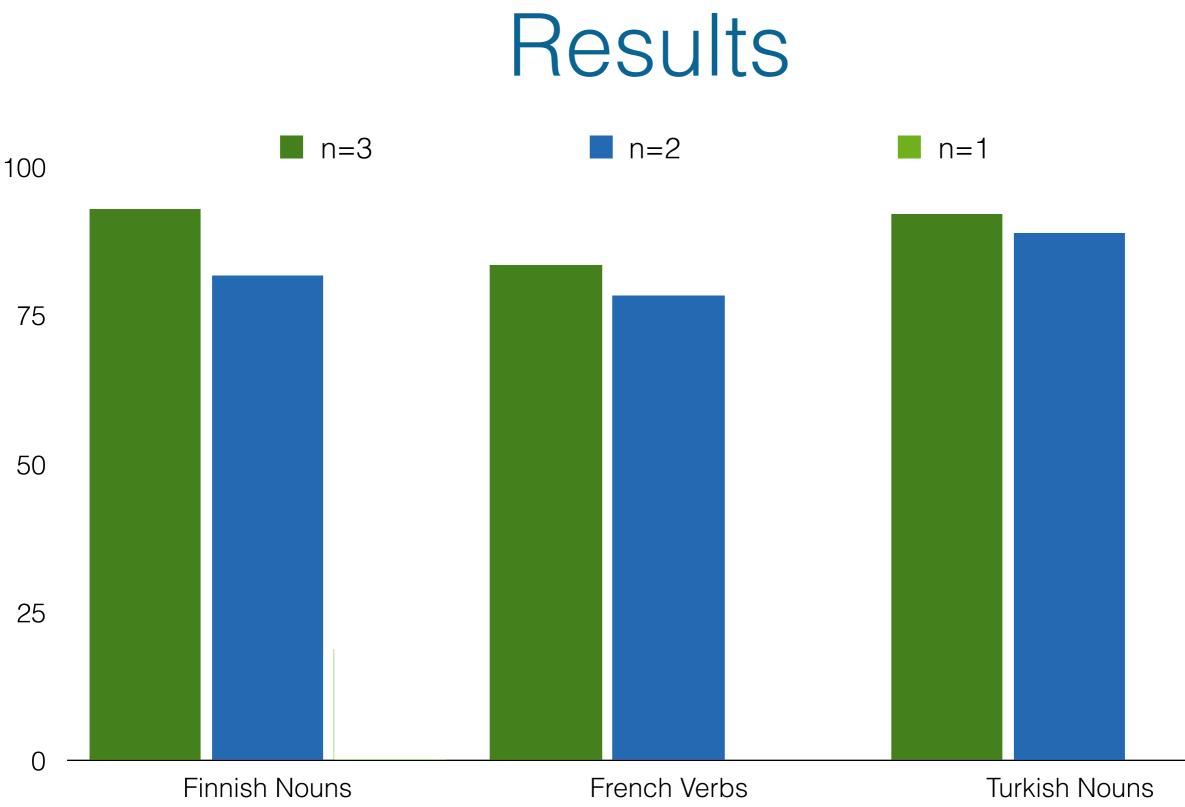
réi	>INF	->	résigner
rs	>INF	->	résigner
rés g	>INF	->	résigner
résign	>INF	->	résigner
résig	>INF	->	résigner
r si	>INF	->	résigner
rési	>INF	->	résigner
r si	>INF	->	résigner
rés g e	>INF	->	résigner
résig	>INF	->	résigner

French "resign"

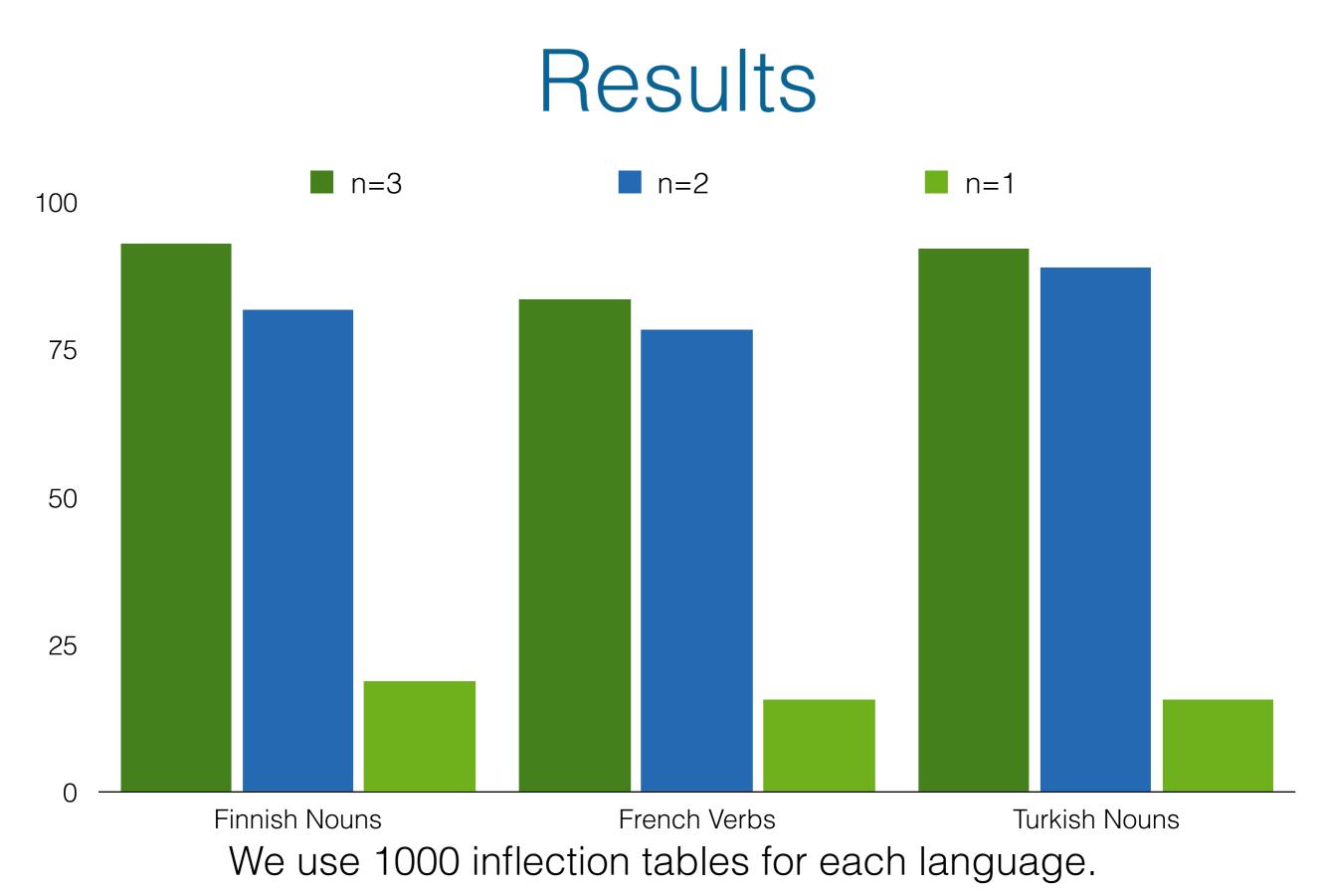


Data Used in Experiments

We present experiments for noun and verb tables for: Finnish, French, Georgian, German, Latin, Latvian, Spanish and Turkish.

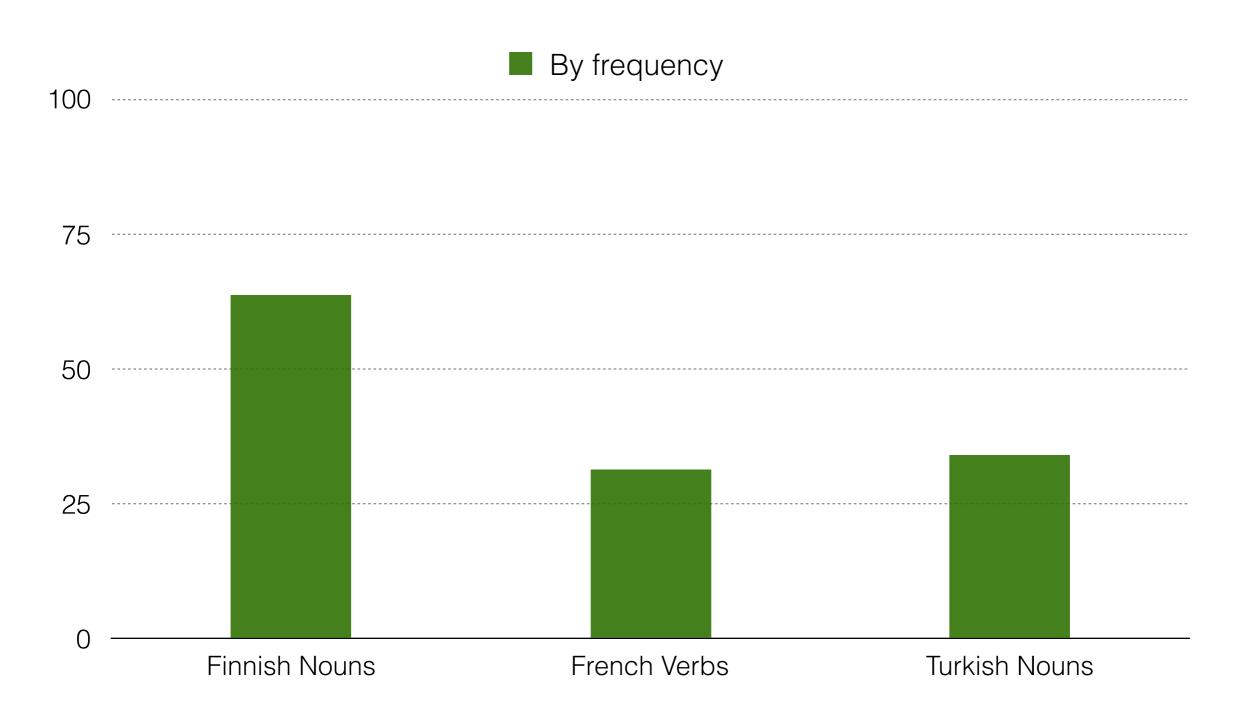


An Encoder-Decoder Approach to PCFP



We use 1000 inflection tables for each language.

An Encoder-Decoder Approach to PCFP



An Encoder-Decoder Approach to PCFP

Results

An Encoder-Decoder Approach to PCFP

Difficult to learn rare forms.

An Encoder-Decoder Approach to PCFP

University of Colorado Boulder

Difficult to learn rare forms.

Major problem: Syncretism

An Encoder-Decoder Approach to PCFP

University of Colorado Boulder

Why are Results Low When Top 10k Forms are Given?

Difficult to learn rare forms.

Major problem: Syncretism

Spießer	N,ACC,PL
Spießer	N,ACC,SG
Spießer	N,DAT,SG
Spießer	N,GEN,PL
	N,DAT,PL
Spießer	N,NOM,PL
Spießer	N,NOM,SG
	N.GEN.SG

German "philistine"

University of Colorado Boulder

Why are Results Low When Top 10k Forms are Given?

Difficult to learn rare forms.

Major problem: Syncretism

Spießer N,ACC,PL Spießer N,ACC,SG Spießer N, DAT, SG Spießer N,GEN,PL Spießern N, DAT, PL Spießer N,NOM,PL Spießer N,NOM,SG Spießers N,GEN,SG

German "philistine"

University of Colorado Boulder

Conclusions & Future Work

- We can learn inflectional morphology even when only given one example per lexeme.
- If every table has two or more forms, accuracy is around 90%.
- Predicting rare forms based on frequent ones is difficult.
- Future work: Need more realistic data set for the L1 learning scenario.

Thank you!

An Encoder-Decoder Approach to PCFP