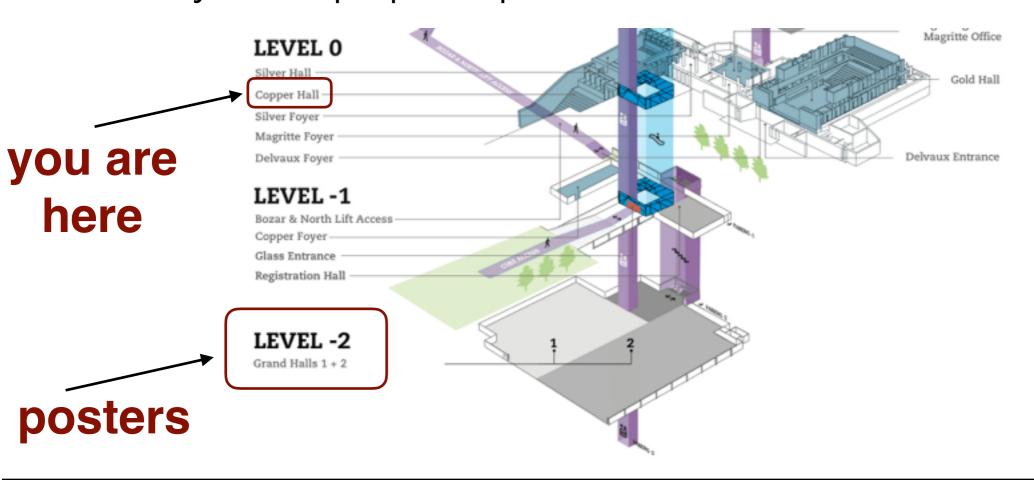


CONLL-SIGMEPHON Shared Task 2018

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Arya D. McCarthy, Katharina Kann, Sebastian Mielke, Garrett Nicola, Mikka Silfverberg, David Yarowsky, Jason Eisner Mans Hulden



Poster session 11.30-12.30

- In Grand Hall (level -2)
- All system papers presented

Get Involved with UniMorph!

SIGMORPHON's shared tasks over the last three years are

part of a larger community effortial

Visit https://unimorph.github.io/
 and sign up!

 μ UniMorph Schema Software Publications Contact

UniMorph

The Universal Morphology (UniMorph) project is a collaborative effort to improve how NLP handles complex morphology in the world's languages. The goal of UniMorph is to annotate morphological data in a universal schema that allows an inflected word from any language to be defined by its lexical meaning, typically carried by the lemma, and by a rendering of its inflectional form in terms of a bundle of morphological features from our schema. The specification of the schema is described here and in Sylak-Glassman (2016).

UniMorph Events

- SIGMORPHON 2016 Shared Task
- CoNLL-SIGMORPHON 2017 Shared Task

Annotated Languages

The following 51 languages have been annotated according to the UniMorph schema. Missing parts of speech will be filled in soon.

Language	ISO-639-3	Forms	Paradigms	Nouns	Verbs	Adjectives	Source	License	
Albanian	sqi	33483	589	✓	✓		W	Θ	
Arabic	ara	140003	4134	✓	✓	✓	W	Θ	
Armenian	hye	338461	7033	✓	✓	✓	W	0	
Basque	eus	11889	26		✓			⊚	- 10
Bengali	ben	4443	136	✓	✓		W	@	
				-				-	

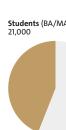
Students (BA/M.

 Second CoNLL shared task on supervised learning of (inflectional) morphology

 Second CoNLL shared tast on supervised learning of (inflectional) morphology

featuring ...

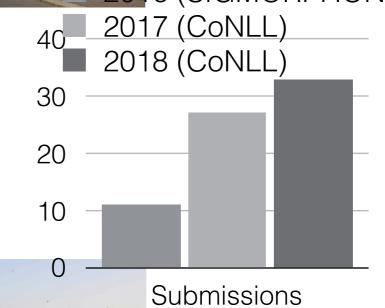
- Second CoNLL shared tast on supervised learning of (inflectional) morphology
- featuring ...
 - 2 tasks



- Second CoNLL shared tast on supervised learning of (inflectional) morphology
- featuring ...
 - 2 tasks
 - 103 languages (task 1): 7 languages (task 2)

 Second CoNLL shared tast on supervised learning of (inflectional) morphology

- featuring ...
 - **2** tasks
 - 103 languages (task 1); 7 languages (task 2)


• Second CoNLL shared tast on supervised learning of (inflectional) morphology 2016 (SIGMORPHON)

- Overview [MH]
- Task 1 Description [MH]
- Task 1 Language Data & Results [CK]
- Task 2 Description, Data & Results MS]

1 Inflection (generation)

1 Inflection (generation)

hate; V; V.PTCP; PRS --- hating

1 Inflection (generation)

hate, $V; V: PTCP; PRS \rightarrow hating$

• 2 Cloze Task (new!) - inflect word in context

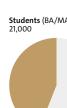
1 Inflection (generation)

hate; V; V.PTCP; PRS → hating

2 Cloze Task (new!) - inflect word in context

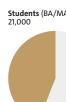
inflect this lemma in context

word form


run

word form

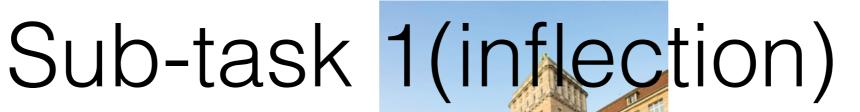
test


run

MSD (Section 1)

word form

test



run

V;PST

MSD (Section 1)

word form

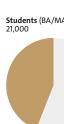
ran

lemma

V;PST run

V; V.PTCP; PRS love

V;PST eat


MSD (Section 1) word form

> ran loving ate

test

lemma

V;PST run

love

eat

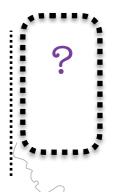
V; V.PTCP; PRS

V;PST

MSD (Section 1)

word form

ran loving


ate

test

hate

V; V.PTCP; PRS

lemma

run

love

eat

V; V.PTCP; PRS

V;PST

V;PST

MSD (Section 1)

word form


ran loving

ate

test

hate read V; V.PTCP; PRS V;PST

lemma

V;PST run

love

eat

V; V.PTCP; PRS

V;PST

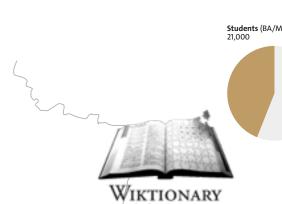
MSD (feetings) word form

> ran loving ate

test

hate read V; V.PTCP; PRS V;PST

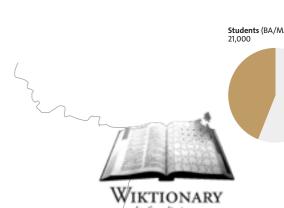
hating read



Training data

Conjugation [edit]

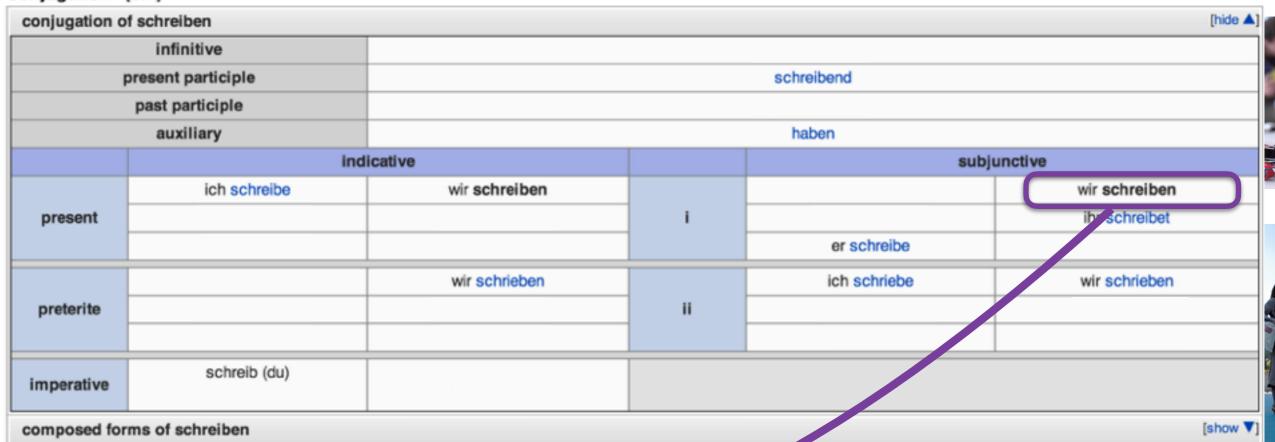
conjugation of	schreiben				[hide		
infinitive present participle past participle		schreiben					
		schreibend geschrieben					
	ind	icative		subj	unctive		
	ich schreibe	wir schreiben	i	ich schreibe	wir schreiben		
present	du schreibst	ihr schreibt		du schreibest	ihr schreibet		
	er schreibt	sie schreiben		er schreibe	sie schreiben		
	ich schrieb	wir schrieben	ii	ich schriebe	wir schrieben		
preterite	du schriebst	ihr schriebt		du schriebest	ihr schriebet		
	er schrieb	sie schrieben		er schriebe	sie schrieben		
immounties	schreib (du)	cohroibt (ibr)					
imperative	schreibe (du)	schreibt (ihr)					
omposed for	ms of schreiben				[show		

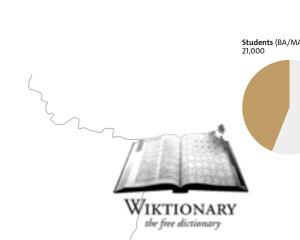


Training data

Conjugation [edit]

conjugation of	schreiben				[1	hide A	
infinitive present participle							
		schreibend					
	past participle						
	auxiliary			haben			
	ind	icative			subjunctive		
	ich schreibe	wir schreiben	i		wir schreiben		
present					ihr schreibet		
				er schreibe			
		wir schrieben	II	ich schriebe	wir schrieben		
preterite							
	schreib (du)						
imperative							
omposed form	ns of schreiben				[s]	how	




Training data

Conjugation [edit]

schreiben

Rule-based baseline (Task 1)

- Simple prefix/suffix transformation based method
- Designed to run fast and be (somewhat) linguistically informed
- By design hard to beat in low data condition (top in 5 languages)

Baseline example

lemma

schielen

infl. form features
geschielt V.PTCP;PST

Baseline example

lemma

schielen

infl. form features
geschielt V.PTCP;PST

align (MED)

schielen geschielt

Baseline example

lemma

schielen

infl. form

geschie

features

V.PTCP;PST

align (MED)

schielen geschielt

Baseline example

lemma

schielen

infl. form

geschie

features

V.PTCP;PST

Pr

Stem Suffix

align (MED)

schiel en

ge schiel t

suffix-transformation rules V.PTCP;PST

Baseline example

lemma

schielen

infl. form

geschie

features

V.PTCP;PST

Suffix Stem

align (MED)

schiel en schiel t

suffix-transformation rules V.PTCP;PST

```
len$ → It$
```


elen\$ → elt\$ hielen\$ → hielt\$

schielen\$ → schielt\$ chielen\$ → chielt\$

Baseline example

lemma

schielen

infl. form

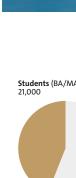
geschielt

features

V.PTCP;PST

align (MED)

Pr ge Stem Suffix


schiel en schiel t

prefix-transformation rules V.PTCP;PST

\$ → \$ge

lemma

test kaufen

infl. form features
???
V.PTCP;PST

lemma

test kaufen

infl. form features
???
V.PTCP;PST

suffix-transformation rules V.PTCP;PST

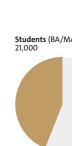
```
n$ → $ lt$ elen$ → elt$ ielen$ → ielt$ hielen$ → hielt$ chielen$ → chielt$ schielen$ → schielt$
```


lemma

test

kaufen kauft

infl. form **features**


??? V.PTCP;PST

suffix-transformation rules V.PTCP;PST

len\$ → lt\$

lemma

test

kaufen
suffix |
kauft

infl. form

???

features

V.PTCP;PST

prefix-transformation rules V.PTCP;PST

\$ **→** \$ge

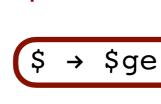
lemma

test

kaufen

suffix |
kauft

infl. form

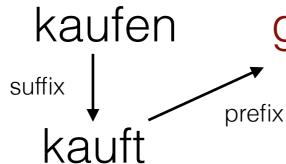

???

features

V.PTCP;PST

most frequent for

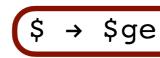
prefix-transformation rules V.PTCP;PST

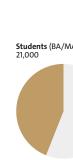


infl. form

features

V.PTCP;PST


test


gekau

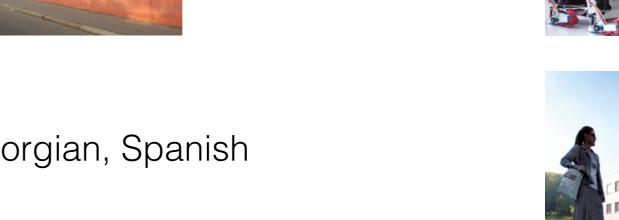
orefix

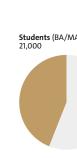
prefix-transformation rules V.PTCP;PST

Task 1 Data Overview

- Inflectional (N, V, ADJ) paradigms from 103 languages
- 93 Development Languages, 10 Surprise Languages
- ~20 linguistic stocks represented

							3	
Athabaskan	Isolate	Kartvelian	Quechuan	Semitic	Sino-Tibetan	Turkic	Uralic	Y
Navajo	Basque	Georgian	Quechua	Arabic	Khaling	Turkish	Estonian	
	Haida			Hebrew			Finnish	dent)00
							Hungarian	
							Northern Sami	





Morphological Processes

- Differing affixation patterns:
 - Prefixing: Navajo
 - Suffixing: Quechua, Turkish
 - Circumfixing, Stem-changing: Georgian, Spanish
- Non-Local Patterns:
 - **Templatic**: Arabic, Hebrew
 - Vowel Harmony: Turkish, Firmish, Hungarian
 - Consonant Harmony: Navajo

Data Sources

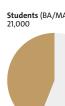
- Wiktionary (<u>www.wiktionary.org</u>): 98 languages
- Alexina Project: 3 languages (Khaling, Kurmanji and Sorani Kurdish)
- Alegria et al. 2009: Basque
- Prof. Jordan Lachler (University): Haida

Annotation

All data sources normalized into triples (lemma, inflection, features):

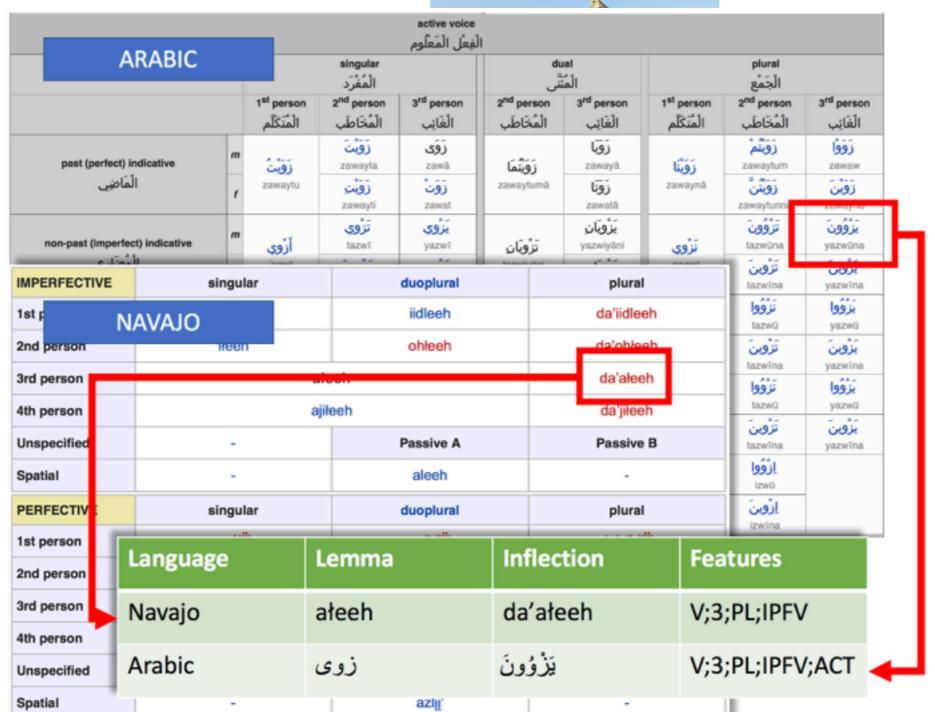
Lemma	Inflection	Tag
achį'	iichį'	V;REAL;1;DU,PROG
achį'	da'iichį'	V;REAL;1;PL,PROG
achį'	ashchį'	V;REAL;1;SG,PROG

- Simple UTF-8 tab-delimited text format
- All data presented using native orthography
- Tags follow the UniMorph Schema

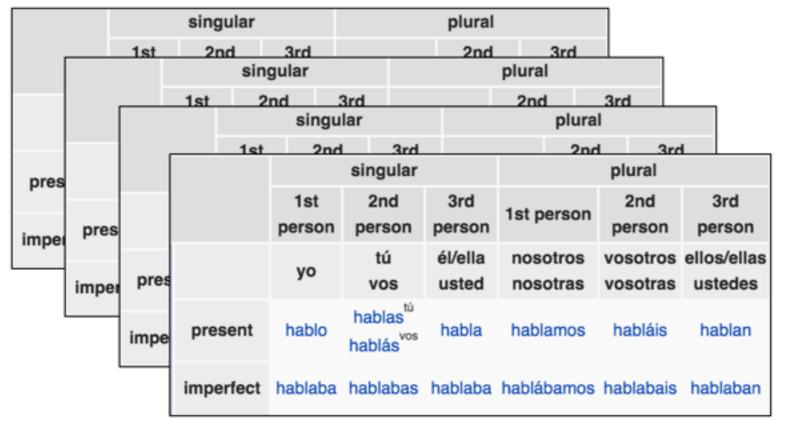


UniMorph Schema

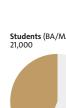
- UniMorph Schema provides tags for minimal units of meaning for inflectional morphology
 - Developed at Johns Hopkins University based on linguistic typology research that takes into account even extremely low resource languages
 - 25 dimensions of meaning (aka morphological categories) with over 300 feature values
 - Feature values (e.g. PRS = present tense) are string-unique, i.e. do not need type to be specified; both PRS and tense=PRS are equally valid.
- User guide and machine-readable son specification available at unimorph.github.io
- Actively maintained with process for making modifications according to community feedback



Wiktionary Collection



Wiktionary Collection


- Each language only has ~2-3 relevant table types per POS, shared across thousands of unique lemmas
- In practice, humans can manually annotate a few sample tables, and extrapolate the rest (e.g. hablo 1;SG;PRS)
- Tagging accuracy verified by experts familiar with each language family.

Descriptors Unimorph singular plural present Imperfect 4+ → V;IPFV;PST

Inflected forms (Data)

hablaba hablo hablas hablás habla

Annotation Process

 Manually edited html paradigm templates using UniMorph Schema

-~300 inflection tags, designed for high typological coverage

	singular	plural
nominative	ле́мма	ле́ммы
genitive	ле́ммы	ле́мм
dative	ле́мме	ле́ммам
accusative	ле́мму	ле́ммы
instrumental	ле́ммой	ле́ммами
prepositional	ле́мме	ле́ммах

		singular	plural
	nominative	N;NOM;SG	N;NOM;PL
	genitive	N;GEN;SG	N;GEN;PL
	dative	N;DAT;SG	N;DAT;PL
	accusative	N;ACC;SG	N;ACC;PL
T Punty Republic	instrumental	N;INS;SG	N;INS;PL
	prepositional	N;ESS;SG	N;ESS;PL
.	1 4 4		

Wiktionary Collection

Parses available at unimorph.github.ic

Annotated Languages

The following 51 languages have been annotated according to the UniMorph schema. Missing parts of speech will be filled in soon.

					-				
Language		ISO-639-3	Forms	Paradigm	s Nouns		Adjectives	Source	License
Albanian		sqi	33483	589	✓	✓		W	@
Download Data:	repo	2016 Shared	Task Splits:	no T	ypology: f	usional	Info: wikipedia		
Report Errors:	issues	2017 Shared	Task Splits:	yes T	emplatic: n	0	Type: living		
Arabic		ara	140003	4134	✓	√	✓	W	@
Armenian		hye	338461	7033	✓	✓	✓	W	@
Basque		eus	11889	26		√			@
Bengali		ben	4443	136	✓	✓		W	@
Bulgarian		bul	55730	2468	✓	✓	✓	W	@
Catalan		cat	81576	1547		✓		W	@
Central Kurdis	sh	ckb	22990	274	✓	✓	✓		@
Czech		ces	134527	5125	✓	✓	✓	W	@
Danish		dan	25503	3193	✓	√		W	@
Dutch		nld	55467	4993		✓	✓	W	@
English		eng	115523	22765		✓		W	@
Estonian		est	38215	886	✓	√		W	@
1									-

Data Sampling

- Constructed MLE probability distributions for over data triples (lemma, infl_form, infl_fts) by counting tokens of inflected forms in Feb. 2017 Wikipedia dump for each language
- Estimated a smooth unigram distribution over triples using this method: Cotterell et al. 2018. Unsupervised disambiguation of syncretism in inflected lexicons. NAACL.
- Sampled 12000 triples without replacement from this distribution
- From those triples, sampled all main deviand test data
- Train, dev, test split data available at: https://github.com/ sigmorphon/conll2018

Data Quantities

- Task 1 training: 10,000 (high) 1000 (medium), 100 (low) forms
- Test & Dev: 1,000 forms each in Task 1
- 40 languages had fewer forms in one or more condition due to data constraints. E.g.: Haida, Bengali, Scottish Gaelic, Basque, Middle High German, Middle Low German, Mapudungun,
- Detailed explanation of data contents available in paper

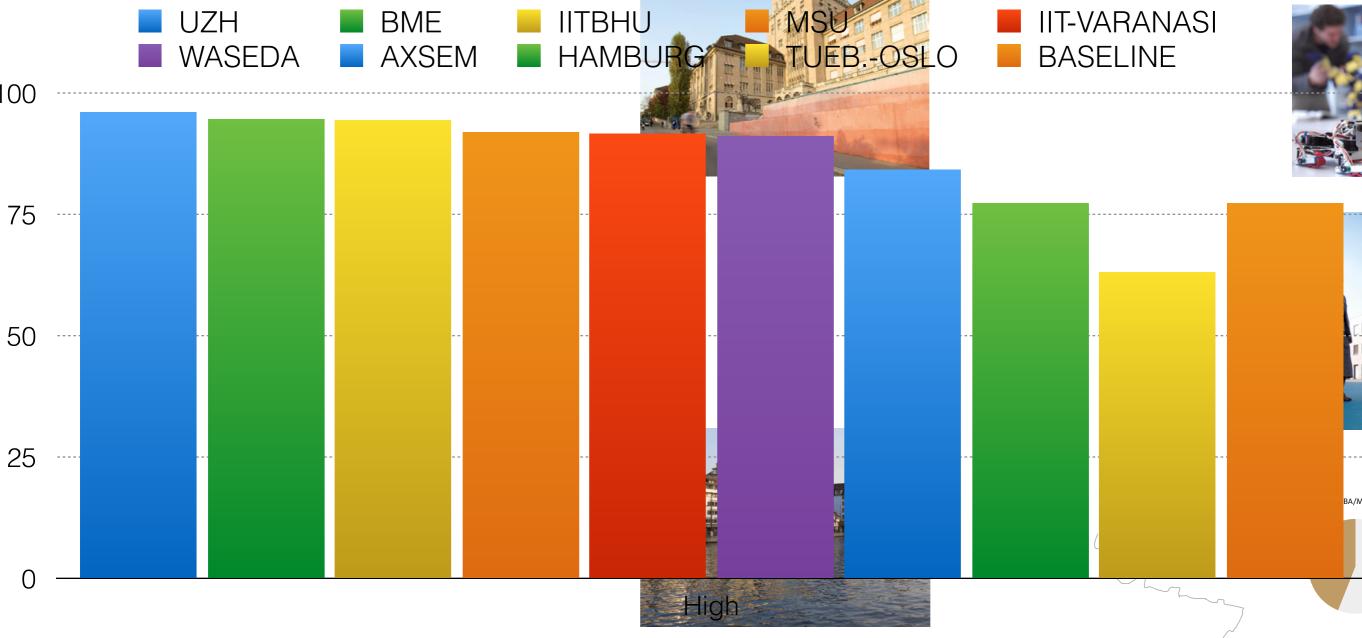
Participation Results Task 1

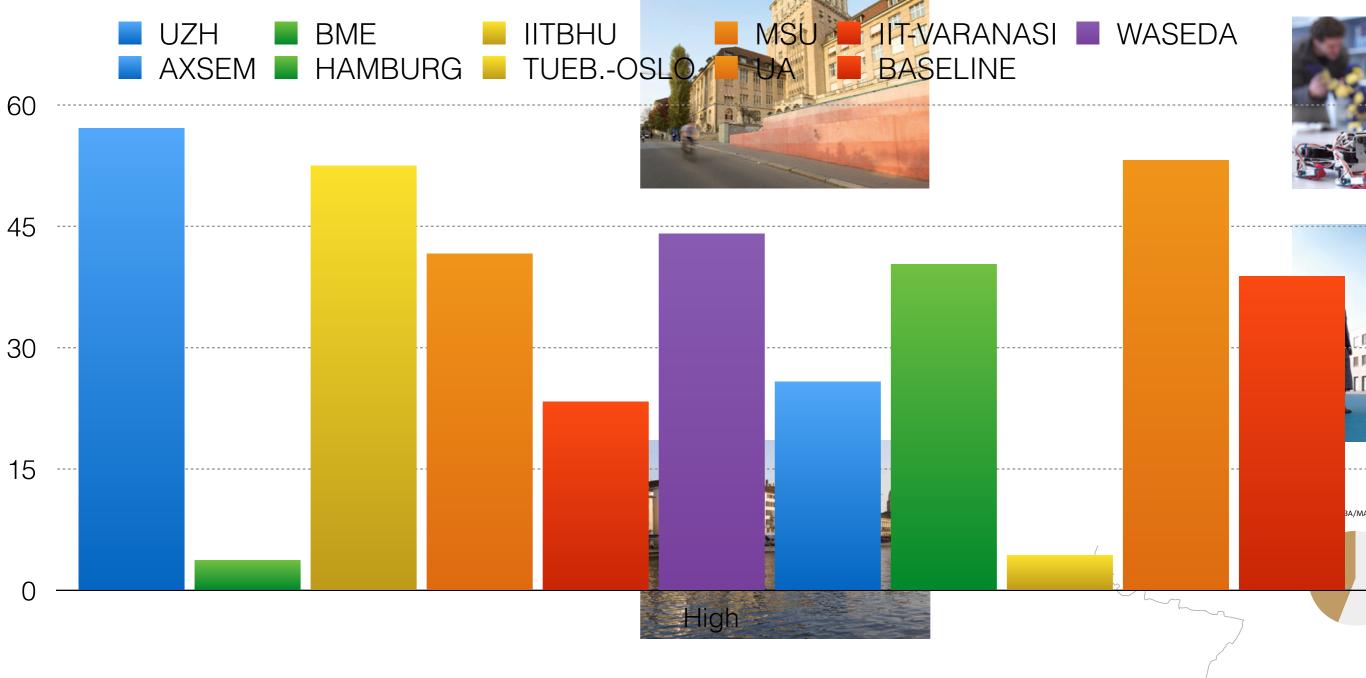
General Participation Statistics

- 15 individual teams competed
- 17 universities and institutes
- 33 individual systems
- **40** authors in total
- (A whole lot of morphology)

Team Overview

Team	Institute(s)
AXSEMANTICS ¹	AX Semantics
BME ¹ /BME-HAS ²	Budapest University of Technology and Economics / Hungarian Academy of Sciences
COPENHAGEN ²	University of Copenhagen
CUBoulder ²	University of Colorado, Boulder
$HAMBURG^1$	Universität Hamburg
$IITBHU^1$	IIT (BHU) Varanasi / IIIT Hyderabad
IIT-VARANASI ¹	Indian Institute of Technology (BHU) Varanasi
$KUCST^1$	University of Copenhagen, Centre for Language Technology
MSU^1	Moscow State University
NYU^2	New York University
$RACAI^1$	Romanian Academy
TUEBINGEN-OSLO ¹	University of Oslo / University of Tübingen
UA^1	University of Alberta
$\mathrm{UZH}^{1,2}$	University of Zurich
$WASEDA^1$	Waseda University

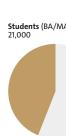




Innovations for Task 1

- 41 languages (out of 52 in 2017) improved in low-resource setting vs. 2017
- Best results, especially in the low/medium data, conditions were achieved using the following strategies:
 - Generating sequences of edit operations instead of standard str2str transduction (AX SEMANTICS, UZH, HAMBURG, MSU, RACAI)
 - Augmenting the available training data with artificial data (TUEBINGEN-OSLO, WAS
- Detailed description papers in CoNLL proceedings!

Task 2: Inflection in Context


Task 2: Inflection in Context

"The cloze test"

Task 2 Description

TRACK 1:

the/DT

The are

dog

be/AUX+PRES+3PL bark/V+V.PTCP

barking

Task 2 Description

TRACK 1:

the/DT

The dogs are

dog

be/AUX+PRES+3PL bark/V+V.PTCP

barking

Task 2 Description

TRACK 1:

The **dogs** are

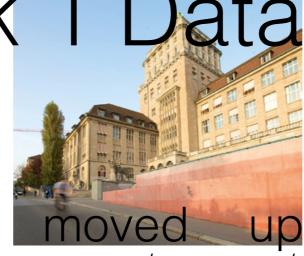
barking

the/DT dog be/AUX+PRES+3PL bark/V+V.PTCP

TRACK 2:

The dogs are barking.

dog

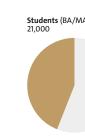

Track 1 Data

train:

Tropical species

tropical/ ADJ species/ N;PL have

have/ AUX;IND;PRS;FIN



move/ V;PST;V.PTCP up/ ADP to/ ADP Florida/ Florida/ PROPN;SG

Track 1 Data

train:

Tropical species

tropical/ ADJ species/ N;PL have

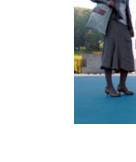
have/ AUX;IND;PRS;FIN

move/ V;PST;V.PTCP up/ to/ ADP ADF

to Florida to/ Florida/ ADP PROPN;SG

test:

Many


many/ ADJ want

want/ V;IND;PRS;FIN

diplomacy

diplomacy/ ADJ

./ Students (BA) 21,000

Track 1 Data

train:

Tropical species

tropical/ **ADJ**

species/ N;PL

have

have/ AUX;IND;PRS;FIN

move/ V;PST;V.PTCP

to/ **ADP**

Florida to Florida/ PROPN;SG **ADP**

PUNCT

test:

Many many/

ADJ

want

want/ V;IND;PRS;FIN

diplomacy

diplomacy/ **ADJ**

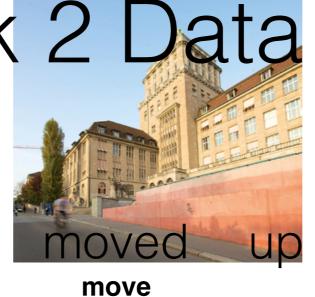


Track 2 Data

train:

Tropical species have

Florida



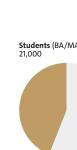
Track 2 Data

train:

Tropical species have

Florida to

test:


Many

people

want

diplomacy

Data Sources

Starting point: Universal Dependencies v2 Treebanks for seven European languages

English, Finnish, French, German, Russian, Spanish and Swedish

Der	der	ART	<pre>Case=Nom Definite=Def Gender=Masc Number=Sing PronType=Art</pre>
Firma	Firma	NN	Case=Nom Gender=Masc Number=Sing
liegt	liegen	VVFIN	Number=Sing Person=3 VerbForm=Fin
genau	genau	ADJD	

ART Case=Dat|Definite=Def|Gender=Masc,Neut|Number=Sing|PronType=Art
Ortseingang NN Case=Dat|Gender=Masc,Neut|Number=Sing
\$.

Ortseingang

Data Sources

Starting point: Universal Dependencies v2 Treebanks for seven European languages

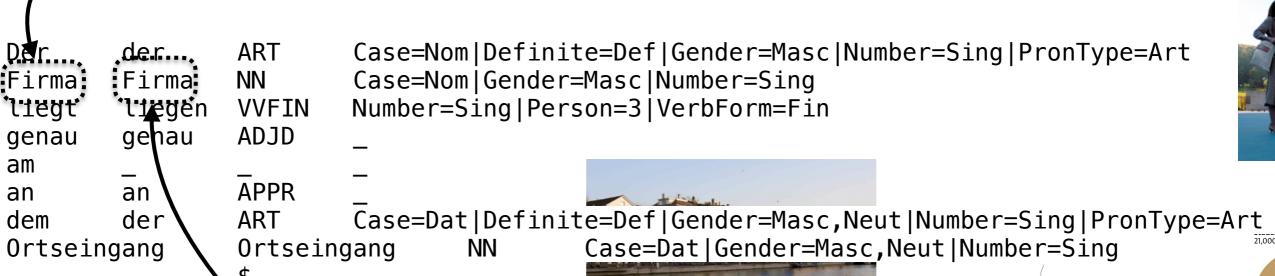
English, Finnish, French, German, Russian, Spanish and Swedish

word form

Ortseingang

Ortseingang

Der Firma liegt genau	der Firma liegen genau	ART NN VVFIN ADJD	<pre>Case=Nom Definite=Def Gender=Masc Number=Sing Case=Nom Gender=Masc Number=Sing Number=Sing Person=3 VerbForm=Fin -</pre>	PronType=Art
am an dem	_ an der	– APPR ART	<pre>- Case=Dat Definite=Def Gender=Masc,Neut Number=</pre>	=SinalPronTvpe=Art



Data Sources

Starting point: Universal Dependencies v2 Treebanks for seven European languages

English, Finnish, French, German, Russian, Spanish and Swedish

word form

lemma

Data Sources

Starting point: Universal Dependencies v2 Treebanks for seven European languages

English, Finnish, French, German, Russian, Spanish and Swedish

lemma

Data Conversion

UD morphosyntactic annotation was converted to the UniMorph schema using deterministic rules.

Der der DET;NOM;DEF;MASC;SG

Firma Firma N;NOM;MASC;SG
liegt liegen V;SG;3;FIN

genau genau ADV an an ADP

dem der DET;DAT;DEF;MASC;NEUT;SG

Ortseingang Ortseingang N; DAT; MASC; NEUT; SG

PUNCT

Data Conversion

UD morphosyntactic annotation was converted to the UniMorph schema using deterministic rules.

Der der DET; NOM; DEF; MASC; SG

Firma Firma N;NOM;MASC;SG liegt liegen V;SG;3;FIN

genau genau ADV an an ADP

dem der DET;DAT;DEF;MASC;NEUT;SG

Ortseingang Ortseingang N;DAT;MASC;NEUT;SG

PUNCT

Because there are few languages in task 2, this was doable.

Einheitssbrei

Manual Annotation

Contextually plausible forms were annotated into the test data.

PRO; NOM; NEUT; SG Das der ragt ragen ADV mal mal angenhem angenehm **ADV ADV** heraus heraus **ADP** aus aus DET; DAT; DEF; NEUT; SG dem der

• PUNCT

Einheitssbrei

N; DAT; NEUT; SG

Manual Annotation

Contextually plausible forms were annotated into the test data.

PRO; NOM; NEUT; SG ragt/rage/ragte ragen **ADV** mal angenhem angenehm **ADV ADV** heraus heraus **ADP** aus aus DET; DAT; DEF; NEUT; SG dem der Einheitssbrei N; DAT; NEUT; SG Einheitssbrei

Plausible forms in context

PUNCT

ragen

Manual Annotation

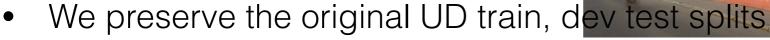
Contextually plausible forms were annotated into the test data.

PRO; NOM; NEUT; SG ragt/rage/ragte ragen **ADV** mal angenhem **ADV** angenehm heraus heraus **ADV ADP** aus aus DET; DAT; DEF; NEUT; SG dem der Einheitssbrei Einheitssbrei N; DAT; NEUT; SG **PUNCT**

Plausible forms in context

Annotators chose among forms in UniMorship tables

```
V; IND; PRS; 1; PL
ragen
        V;SBJV;PRS;2;PL
raget
        V;SBJV;PRS;3;SG
rage
        V; IND; PRS; 2; SG
ragst
        V;SBJV;PST;3;PL
ragten
ragtest V;SBJV;PST;2;SG
        V;SBJV;PST;2;PL
ragtet
        V;SBJV;PST;3;SG
ragte
        V; IND; PRS; 3; SG
ragt
        V; IMP; 2; SG
rag
```

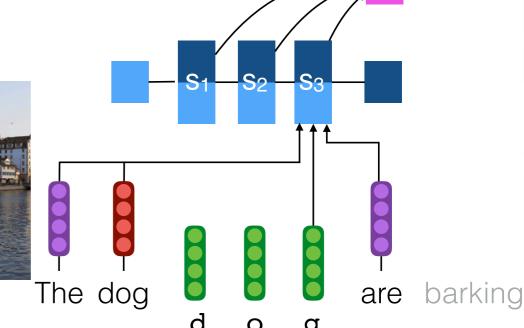
- We preserve the original UD train, dev test splits
- For the train set, we sampled 1k, 10k and 100k tokens into the low, medium and high sets, respectively.

- We preserve the original UD train, dev test splits
- For the train set, we sampled 1k, 10k and 100k tokens into the low, medium and high sets, respectively.
- For the dev set, we used all available sentences.

- We preserve the original UD train, dev test splits
- For the train set, we sampled 1k, 10k and 100k tokens into the low, medium and high sets, respectively.
- For the dev set, we used all available sentences.
- For test sets, we selected 1k examples for each language.

- We preserve the original UD train, dev test splits
- For the train set, we sampled 1k, 10k and 100k tokens into the low, medium and high sets, respectively.
- For the dev set, we used all available sentences.
- For test sets, we selected 1k examples for each language.

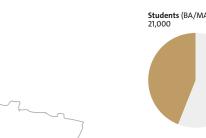
cat


• q

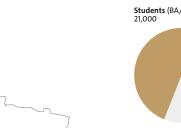
Neural Baseline Model for

Track 2 baseline:

- Basis: Bidirectional LSTM Encoder-Decoder with attention
- Encoder conditioned on: lemmata, forms and MSDs of the left and right context token in track 1.
- Encoder conditioned on: the left and context word form in track 2.



						9
	predict MSD	subword context	context RNN	context attention	multilingual	beam search
BME-HAS (Ács, 2018)	_	✓	✓	_	_	-11
COPENHAGEN (Kementchedjhieva et al., 2018)	✓	_	✓	_	✓	-
CUBoulder (Liu et al., 2018)	✓	_	_	_	_	- 6
NYU (Kann et al., 2018)	_	✓	✓	✓	_	_ 🧠
UZH (Makarov and Clematide, 2018)	_	✓	_	_	_	



All systems were neural.

						- Grand - Gran
	predict MSD	subword context	context RNN	context attention	multilingual	beam search
BME-HAS (Ács, 2018)	_	✓	✓	_	_	-100
COPENHAGEN (Kementchedjhieva et al., 2018)	✓	_	✓	_	✓	-
CUBoulder (Liu et al., 2018)	✓	_	_	_	_	- 6
NYU (Kann et al., 2018)	_	✓	✓	✓	_	_ 🦓
UZH (Makarov and Clematide, 2018)	_	✓	_	_	_	1

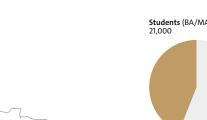
First **predict MSD** of the target lemma, then inflect.

All systems were neural.

						Ge Common of the
	predict MSD	subword context	context RNN	context attention	multilingual	beam search
BME-HAS (Ács, 2018)	_	✓	1	_	_	-1
COPENHAGEN (Kementchedjhieva et al., 2018)	✓	_	✓	_	✓	-
CUBoulder (Liu et al., 2018)	✓	_	_	_	_	- 6
NYU (Kann et al., 2018)	_	✓	✓	✓	_	_ 🧠
UZH (Makarov and Clematide, 2018)	_	✓	_	_	_	1

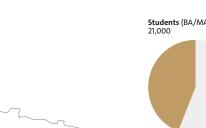
First **predict MSD** of the target lemma, then inflect.

Use character-based or other subword context model.



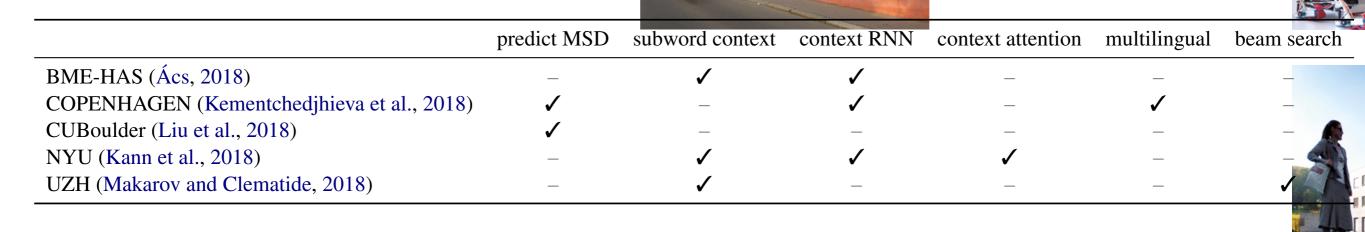
						The state of the s
	predict MSD	subword context	context RNN	context attention	multilingual	beam search
BME-HAS (Ács, 2018)	_	✓	✓	_	_	-1
COPENHAGEN (Kementchedjhieva et al., 2018)	✓	_	✓	_	✓	-
CUBoulder (Liu et al., 2018)	✓	_	_	_	_	- (
NYU (Kann et al., 2018)	_	✓	✓	✓	_	_ 🧠
UZH (Makarov and Clematide, 2018)	_	✓	_	_	_	

- First **predict MSD** of the target lemma, then inflect.
- Use character-based or other **subword context** model.
- Encode the sentence context using a context RNN.

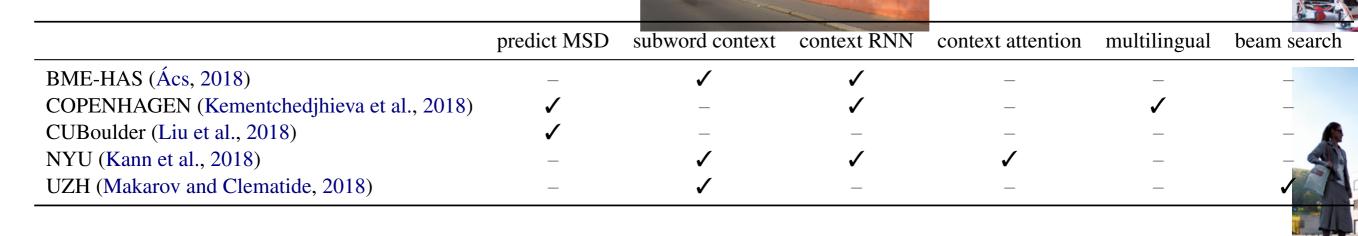


	predict MSD	subword context	context RNN	context attention	multilingual	beam search
BME-HAS (Ács, 2018)	_	√	√	_	_	-
COPENHAGEN (Kementchedjhieva et al., 2018)	✓	_	✓	_	✓	-
CUBoulder (Liu et al., 2018)	✓	_	_	_	_	- 6
NYU (Kann et al., 2018)	_	✓	✓	\checkmark	_	_
UZH (Makarov and Clematide, 2018)	_	✓	_	_	_	

- First **predict MSD** of the target lemma, then inflect.
- Use character-based or other **subword context** model.
- Encode the sentence context using a context RNN.
- Use a context attention mechanism

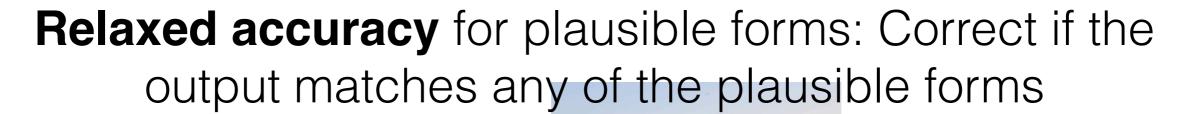


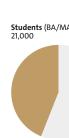
- First **predict MSD** of the target lemma, then inflect.
- Use character-based or other **subword context** model.
- Encode the sentence context using a context RNN.
- Use a context attention mechanism.
- Combine training sets for different languages into multilingual training sets.

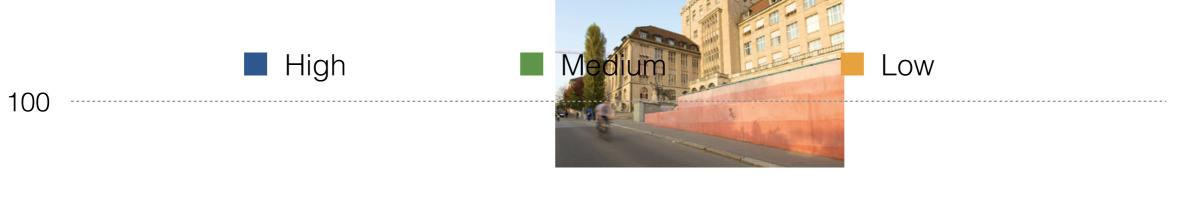


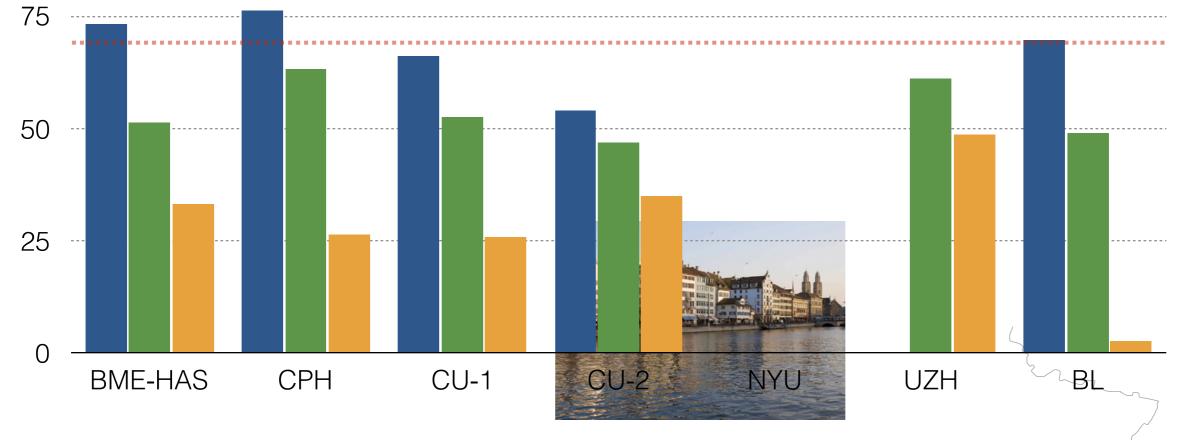
- First **predict MSD** of the target lemma, then inflect.
- Use character-based or other **subword context** model.
- Encode the sentence context using a context RNN.
- Use a context attention mechanism
- Combine training sets for different languages into multilingual training sets.
- Use beam search when decoding.

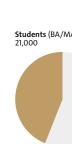
CoNLL 2018

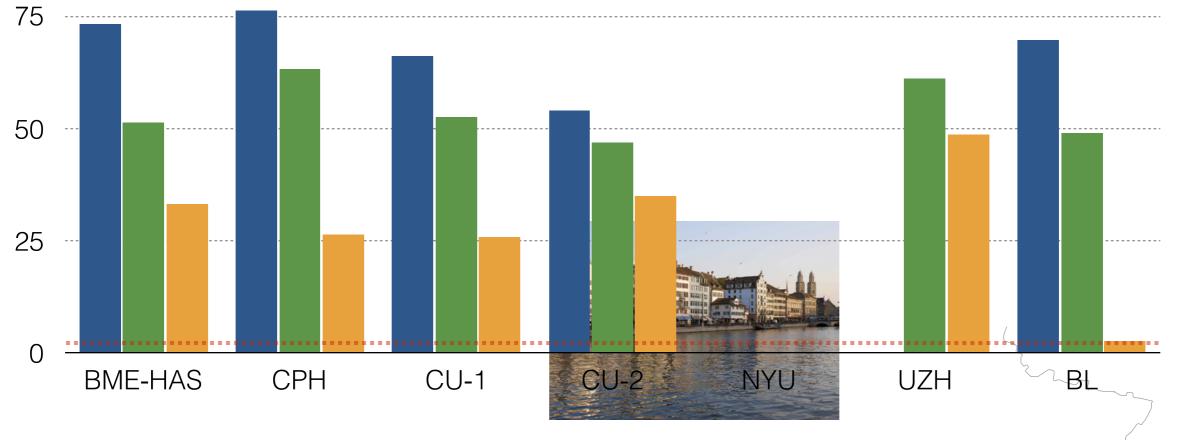


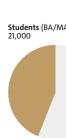


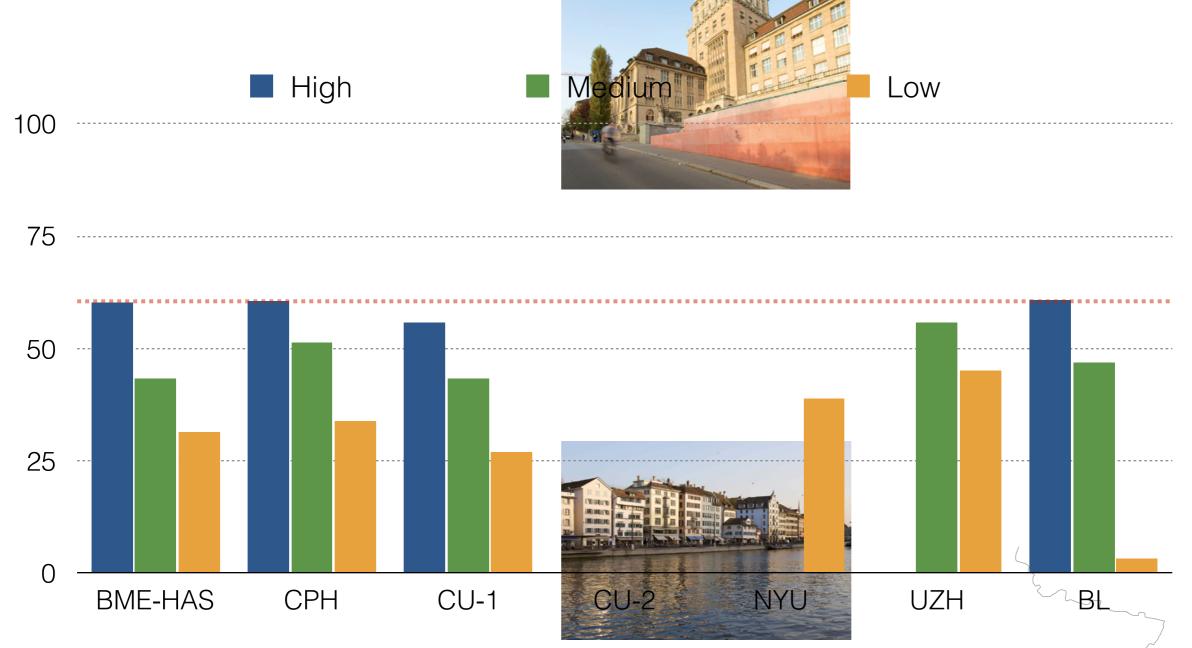


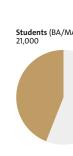


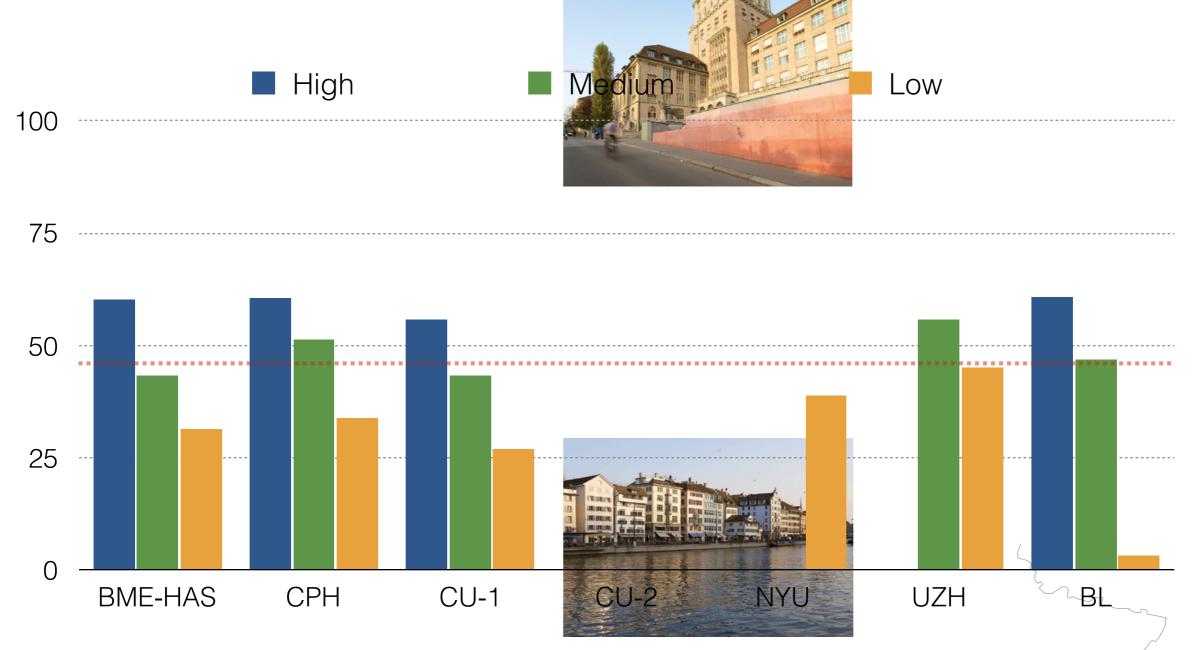


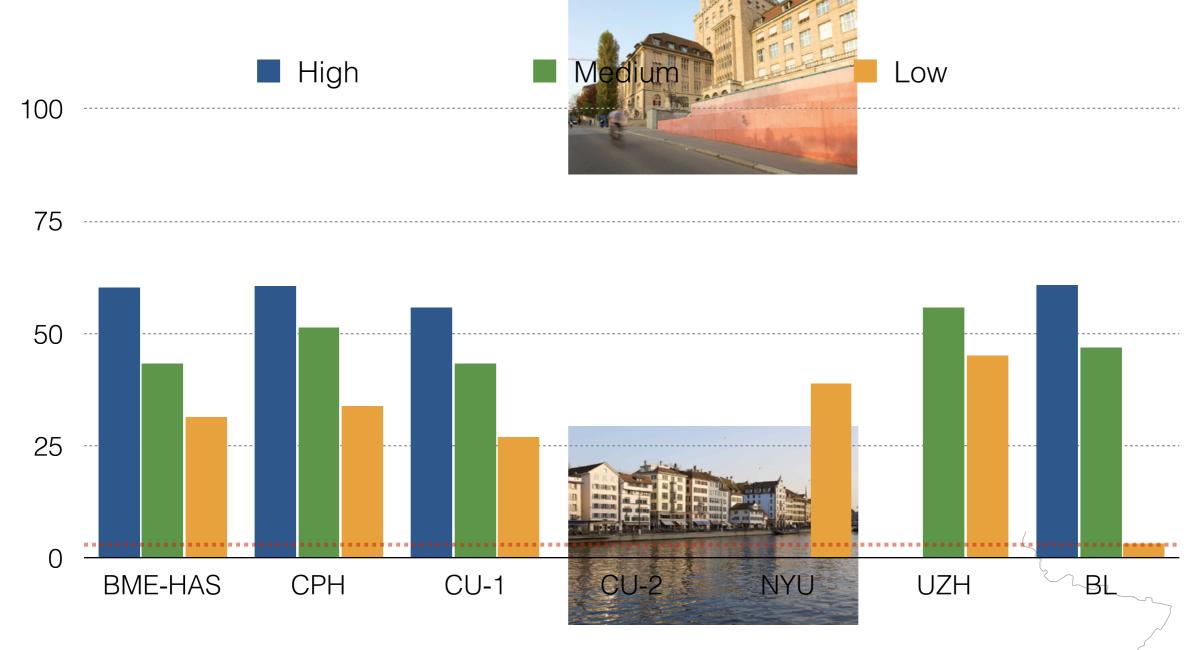


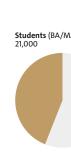


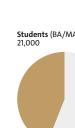












Task 2 Conclusions

- Neural transition-based transducer by Zurich works the best in the low and medium setting.
- Multilinguality incorporated by Copenhagen also clearly pays off.
- It is difficult to improve upon the baseline in the high setting in track
 This might change given more training data or in a semisupervised scenario.
- The best track 1 system outperforms the best track 2 system for all languages. Context MSDs and lemma clearly help!

SIGMORPHON 2019 Shared Task?

- SIGMORPHON)!
- There may be a fourth shared task next year (under
 - Consider participating or helping organize and providing task suggestions!
- If arranged, it will feature new tasks, new languages

☑ / SHARED TASKS / 2018

CoNLL-SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection

- Task 1: Type-level inflection
- Task 2: Inflection in context
- Data and Baselines
- Registration
- Google Group
- Organizers
- Dates

Questions?
Suggestions?
Comments?

https://sigmorphon.github.io/sharedtasks/2018/

