Predicate: quadrangulate

Roleset id: quadrangulate.01 , pinpoint the location of using 4 points (as opposed to 3 in triangulation), Source: , vncls: , framnet:

quadrangulate.01: QUADRANGULATE-V NOTES: Added by Julia. QUADRANGULATION-N NOTES: Added by Julia.

Aliases:

AliasFrameNetVerbNet
quadrangulate (v.)
quadrangulation (n.)

Roles:

        Arg0-PAG: quadrangulator
        Arg1-PPT: location searched for
        Arg2-MNR: based on, known info

Example: quadrangulate-v

        With enough data it will, well, "quadrangulate" the location of the Temporal Exterminator, the actual firing mechanism.

        Argm-adv: with enough data
        Arg0: it
        Argm-mod: will
        Argm-adv: well
        Rel: quadrangulate
        Arg1: the location of the Temporal Exterminator, the actual firing mechanism

Roleset id: quadrangulate.02 , divide into quadrangles, Source: , vncls: , framnet:

quadrangulate.02: QUADRANGULATE-V NOTES: Added by Julia. QUADRANGULATION-N NOTES: Added by Julia.

Aliases:

AliasFrameNetVerbNet
quadrangulate (v.)
quadrangulation (n.)

Roles:

        Arg0-PAG: quadrangulator
        Arg1-PPT: region divided into quadrangles
        Arg2-VSP: quadrangle side length measurement
        Arg3-VSP: number of nodes

Example: quadrangulate-v

        Repeating this argument once more, we can show that P4 also has an even number of edges, and therefore it-1 can be quadrangulated *-1.

        Argm-mod: can
        Rel: quadrangulated
        Arg1: *-1

Example: quadrangulation-n

        We describe a fundamentally new approach to the quadrangulation of manifold polygon meshes using Laplacian eigenfunctions, the natural harmonics of the surface.

        Rel: quadrangulation
        Arg1: of manifold polygon meshes
        Argm-mnr: using Laplacian eigenfunctions, the natural harmonics of the surface