

Translation as Parsing with a Synchronous Tree Grammar

Libin Shen BBN Technologies

Feb. 24, 2009

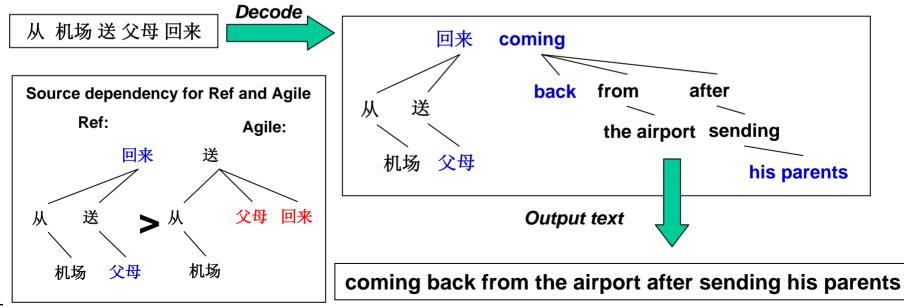
1

Overview

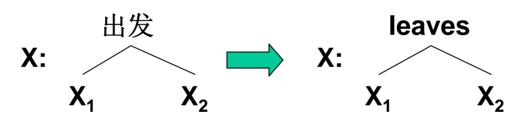
- Improving HierDec
 - Problems with a string-to-tree model
 - Extension to a tree-to-tree model
- Preliminary results
- Conclusions and future work

The HierDec System

- HierDec is BBN's Hierarchical MT Decoder
 - From source-string to target-dependency-structure
 - Extended the string-to-string approach of Hiero (Chiang, 2005)
- Main Components
 - Rule extractor
 - Input: bi-lingual training data with GIZA alignment target parse trees
 - Output: string to dependency transfer rules, e.g.


- Decoder
 - A chart parsing algorithm that produces a shared forest of target dependency structures
 - Using a target dependency LM on the fly

- An example from the last OntoNotes workshop
 - Source:从机场送父母 回来
 from airport send parents to come back
 - Ref: coming back from the airport after sending his parents
 - Agile: from the airport to send *their parents* to *come back*
- Traditional string LMs prefer locally fluent translation
- Dependency LMs prefer grammatical translation
- A string-to-tree model does not employ any source side structural constraint to avoid incorrect application of translation rules



- To generate source dependency structures in decoding to exploit the parallel source dependency relations
 - Building aligned dependency trees on both sides in parallel
 - Source dependency LM to measure the source analysis
 - Ref: *coming back* from the airport after sending *his parents* Agile: from the airport to send *their parents* to *come back*

HierDec in Dependency-to-Dependency Mode

- Rule extraction
 - Input:
 - Bi-lingual training data with GIZA alignment
 - Target parse trees
 - Source parse trees
 - Output:
 - Dependency-to-dependency transfer rules, e.g.

- Decoding
 - A chart parser that produces a shared forest of
 - Target dependency structures
 - Aligned source dependency structures
 - Using the source dep. LM score as an extra feature

- Experimental setup:
 - Test: MT06 and MT08 Chinese-English
 - Development: MT02-05, tuned on IBM BLEU
 - Training: GALE data with GIZA alignment; Source and target parse trees generated by two independent parsers.
- Results:
 - The dependency-to-dependency model does not show any improvement over the baseline, but they are very close.

Model	MT06		MT08	
	BLEU	TER	BLEU	TER
string-to-dep	37.44	54.64	33.05	56.79
dep-to-dep	37.30	54.24	33.03	56.59

Experiments on MT06 and MT08 (cont')

- Abnormal decrease in the number of transfer rules
 - The number is supposed go up: One string-to-dep rules would be splitted into several dep-to-dep rules due to the different analyses of the source dependency.
 - However, many more translation rules are discarded since the source side cannot be represented as a *well-formed* dependency structure.

Model	Number of Rules	
string-to-dep	41,013,346	
dep-to-dep	39,213,131	

- Cause of the phenomenon:
 - The source and target trees generated by two independent parsers are inconsistent.
- The missing translation rules may result in the performance degradation.

- Parsing with a synchronous tree grammar (Shieber and Schabes, 1990) is empirically a tractable decoding algorithm for statistical MT.
 - A neat solution to employ source and target dependency relations jointly.
- Our first attempt does not shown improvement over a state-of-the-art string-to-dependency model, but it is promising.
 - Fixing existing flaws in the parsing model will give rise to performance improvement.

- A bi-lingual parser
 - Trained from bi-lingual treebanks.
 - To parse the MT bi-lingual training data, and it guarantees better source and target tree consistency.
 - Self-training of the bi-lingual parser.
- To integrate alignment with bi-lingual parsing
 - From word-level alignment to hierarchical alignment