

Banks Meeting: Data Selection

2009-02-24

Martha Palmer

http://www.bbn.com/NLP/OntoNotes

Motivation

- Very skewed sense distribution
- Need balanced data with the rare senses well represented
 - The fact that a sense is rare in WSJ doesn't mean it's also rare in some other domain
 - May need a specific (rare) sense for text mining
- Verb add
 - 288 instances of the predominant sense
 - 22 instances of the rare sense (7%)
 - To get 22 instances of the rare sense, need to annotate 310 instances!
- Can we do better?

Data Selection Plan for Web Text

- 2-way translations of Arabic, Chinese and English to create parallel corpora
- Document selection
- Sentence selection

- Histograms for each doc completed and merged.
- Document profile for every doc being generated:
 - 400 nouns, 1000 verbs (440 new verbs and 530 old verbs with < 15 instances) on target list
 - 3 features generated for each doc:
 - how many verbs from list are present?
 - how many nouns from list are present?
 - is the doc weblog data?
 - Also produces wc of doc and total of hits from target list (doesn't count repetitions of the same word)
 - Pick top 2000 docs based on features
- Filtered for spam, etc., selected top 70K of docs

- Use "Document" set as test data for "sentence" data
- Select lemmas (verbs and nouns)
 - Histogram of verbs in web text
 - Histogram of verbs missing senses
 - Pick overlap that has the most instances in "Document" set
- Select sentences for top 50 verbs in overlap
 - Random sampling
 - Batch Mode Active learning
 - Language Model
- Expected results
 - 200K words of data = 10K sentences
 - Avg of 50 instances @ for 100 verbs/100 nouns

- Annotate all instances of the verb
- X: Number of instances (%), Y: Rare Sense Recall

Approach 1 - Active Learning

- Run an automated system that provides confidence values
- Extract the lowest confidence instance, hand-correct it, add it to the training data
- Repeat
- Simulations using previously tagged data indicated half the additional data provides the same performance improvement as random sampling
 - Chen, Stein, Ungar, Palmer, NAACL-06
 - Zhu, J. and E.H. Hovy. IJCNLP-08, EMNLP-07

- Very impractical for a sense tagging project
 - Human annotators have to sit and wait while a single instance is being selected and again during retraining
- Batch Mode Active Learning.
 - Select the 50 lowest confidence instances at one time,
 - hand correct all of them,
 - retrain,
 - repeat if necessary

Approach 2: Language Model Precipitating out Rare senses

- Compute a language model (wsj+brown+ebn+ectb)
- Compute probability (perplexity) for each instance of the verb
 - n-size windows around the target verb
 - logprob <instance> / total words
- Rank the instances by probability

Higher Concentration of the Rare Sense Instances at the Top

GALE

The AGILE Team

lemma	rare	precision	recall
account-v	0.12	0.21	0.93
add-v	0.07	0.10	0.73
admit-v	0.18	0.19	0.55
allow-v	0.06	0.08	0.69
compare-v	0.08	0.16	1
explain-v	0.10	0.12	0.6
maintain-v	0.11	0.11	0.53
point-v	0.15	0.29	1
receive-v	0.07	0.08	0.6
remain-v	0.15	0.20	0.65
worry-v	0.15	0.22	0.73

2-sense verbs rare sense < 20%

(at least 100 instances)

average baseline: 0.11

average precision: 0.16

average recall: 0.73