Natural Language Processing

Lecture 2—1/15/2015
Susan W. Brown

Today

• Regular expressions
• Finite-state methods
Regular Expressions and Text Searching

- Regular expressions are a compact textual representation of a set of strings that constitute a language
 - In the simplest case, regular expressions describe regular languages
 - Here, a language means a set of strings given some alphabet.
- Extremely versatile and widely used technology
 - Emacs, vi, perl, grep, etc.

Example

- Find all the instances of the word “the” in a text.
 - /the/
 - /[tT]he/
 - /\b[tT]he\b/
Errors

• The process we just went through was based on fixing two kinds of errors
 • Matching strings that we should not have matched (there, then, other)
 ▪ False positives (Type I)
 • Not matching things that we should have matched (The)
 ▪ False negatives (Type II)

Errors

• We’ll be telling the same story with respect to evaluation for many tasks. Reducing the error rate for an application often involves two antagonistic efforts:
 • Increasing accuracy, or precision, (minimizing false positives)
 • Increasing coverage, or recall, (minimizing false negatives).
3 Formalisms

- Recall that I said that regular expressions describe languages (sets of strings)
- Turns out that there are 3 formalisms for capturing such languages, each with their own motivation and history
 - Regular expressions
 - Compact textual strings
 - Perfect for specifying patterns in programs or command-lines
 - Finite state automata
 - Graphs
 - Regular grammars
 - Rules

These three approaches are all equivalent in terms of their ability to capture regular languages. But, as we’ll see, they do inspire different algorithms and frameworks.
FSAs as Graphs

- Let’s start with the sheep language from Chapter 2
 - /baa+/!

Sheep FSA

- We can say the following things about this machine
 - It has 5 states
 - b, a, and ! are in its alphabet
 - q₀ is the start state
 - q₄ is an accept state
 - It has 5 transitions
But Note

• There are other machines that correspond to this same language

![Diagram: States and transitions]

• More on this one later

More Formally

• You can specify an FSA by enumerating the following things.
 • The set of states: Q
 • A finite alphabet: Σ
 • A start state
 • A set of accept states
 • A transition function that maps $Q \times \Sigma$ to Q
About Alphabets

• Don’t take term *alphabet* too narrowly; it just means we need a finite set of symbols in the input.

• These symbols can and will stand for bigger objects that may in turn have internal structure
 ♦ Such as another FSA

Dollars and Cents
Yet Another View

- The guts of an FSA can ultimately be represented as a table:

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
<th>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you’re in state 1 and you’re looking at an a, go to state 2.

Recognition

- Recognition is the process of determining if a string should be accepted by a machine.
- Or... it’s the process of determining if a string is in the language we’re defining with the machine.
- Or... it’s the process of determining if a regular expression matches a string.
- Those all amount to the same thing in the end.
Recognition

- Traditionally, (Turing’s notion) this process is depicted with an input string written on a tape.

- Simply a process of starting in the start state
- Examining the current input
- Consulting the table
- Going to a new state and updating the tape pointer.
- Until you run out of tape.
Key Points

- Deterministic means that at each point in processing there is always one unique thing to do (no choices; no ambiguity).
- D-recognize is a simple table-driven interpreter
- The algorithm is universal for all unambiguous regular languages.
 - To change the machine, you simply change the table.
Key Points

- Crudely therefore... matching strings with regular expressions (ala Perl, grep, etc.) is a matter of
 - translating the regular expression into a machine (a table) and
 - passing the table and the string to an interpreter that implements D-recognize (or something like it)

Recognition as Search

- You can view this algorithm as a trivial kind of *state-space search*.
- States are pairings of tape positions and state numbers.
- Operators are compiled into the table
- Goal state is a pairing with the end of tape position and a final accept state
- It is trivial because?
Non-Determinism

Table View

Allow multiple entries in the table to capture non-determinism

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
<th>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Non-Determinism cont.

- Yet another technique
 - Epsilon transitions
 - Key point: these transitions do not examine or advance the tape during recognition

Equivalence

- Non-deterministic machines can be converted to deterministic ones with a fairly simple construction
- That means that they have the same power; non-deterministic machines are not more powerful than deterministic ones in terms of the languages they can and can’t characterize
ND Recognition

- Two basic approaches (used in all major implementations of regular expressions, see Friedl 2006)
 1. Either take a ND machine and convert it to a D machine and then do recognition with that.
 2. Or explicitly manage the process of recognition as a state-space search (leaving the machine/table as is).

Non-Deterministic Recognition: Search

- In a ND FSA there exists at least one path through the machine for a string that is in the language defined by the machine.
- But not all paths directed through the machine for an accept string lead to an accept state.
- No paths through the machine lead to an accept state for a string not in the language.
Non-Deterministic Recognition

- So **success** in non-deterministic recognition occurs when a path is found through the machine that ends in an accept.
- **Failure** occurs when all of the possible paths for a given string lead to failure.

Example

```
q0  b  a  a  a  !  \q4
q0  q1  q2  q3  q4
```

Lecture 2 1/15/2015
Speech and Language Processing - Jurafsky and Martin
Example

1

Example

2
Example

1. \(\text{balala!} \)
2. \(\text{balala!} \)
3. \(\text{balala!} \)
4. \(\text{balala!} \)
5. \(\text{balala!} \)

Example

1. \(\text{balala!} \)
2. \(\text{balala!} \)
3. \(\text{balala!} \)
4. \(\text{balala!} \)
5. \(\text{balala!} \)
6. \(\text{balala!} \)
Example

1

2

3

4

5

6

7

8

Example
Key Points

• States in the search space are pairings of tape positions and states in the machine.
• By keeping track of as yet unexplored states, a recognizer can systematically explore all the paths through the machine given an input.

Why Bother?

• Non-determinism doesn’t get us more formal power and it causes headaches so why bother?
 • More natural (understandable) solutions
 • Not always obvious to users whether the regex that they’ve produced is deterministic or not
 • Better to not make them worry about it
Converting NFAs to DFAs

- The Subset Construction is the means by which we can convert an NFA to a DFA automatically.
- The intuition is to think about being in multiple states at the same time. Let’s go back to our earlier example where we’re in state q₂ looking at an “a”
Subset Construction

• So the trick is to simulate going to both q2 and q3 at the same time
• One way to do this is to imagine a new state of a new machine that represents the state of being in states q2 and q3 at the same time
 ♦ Let’s call that new state \{q2,q3\}
 ♦ That’s just the name of a new state but it helps us remember where it came from
 ♦ That’s a subset of the original set of states
• The construction does this for all possible subsets of the original states (the powerset).
 ♦ And then we fill in the transition table for that set

Subset Construction

• Given an NFA with the usual parts: Q, \(\Sigma\), transition function \(\delta\), start state \(q_0\), and designated accept states
• We’ll construct a new DFA that accepts the same language where
 ♦ States of the new machine are the powerset of states Q: call it \(Q_D\)
 ♦ Set of all subsets of Q
 ♦ Start state is \(\{q_0\}\)
 ♦ Alphabet is the same: \(\Sigma\)
 ♦ Accept states are the states in \(Q_D\) that contain any accept state from Q
Subset Construction

• What about the transition function?
 ● For every new state we’ll create a transition on a symbol α from the alphabet to a new state as follows
 ● \(\delta_D(\{q_1, \ldots, q_k\}, \alpha) = \) is the union over all \(i = 1, \ldots, k \) of \(\delta_N(q_i, \alpha) \)
 for all \(\alpha \) in the alphabet

Baaal!

• How does that work out for our example?
 ● Alphabet is still “a”, “b” and “!”
 ● Start state is \(\{q_0\} \)
 ● Rest of the states are: \(\{q_1\}, \{q_2\}, \ldots \{q_4\}, \{q_1, q_2\}, \{q_1, q_3\}, \ldots \{q_0, q_1, q_2, q_3, q_4, q_5\} \)
 ■ All \(2^5-1 \) subsets of states in \(Q \)
 ● What’s the transition table going to look like?
Lazy Method

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
<th>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td>q2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td>q2,q3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>q4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baaa!

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
<th>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td>q2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td>q2,q3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>q4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

{q0} {q1}
Lecture 2 1/15/2015

Speech and Language Processing - Jurafsky and Martin

Baaa!

q0	b	a	!
q0 | q1
q1 | q2
q2 | q2, q3
q3 | q4
q4 |

\[\{q0\}, \{q1\}, \{q1\} \]

1/18/2015

Speech and Language Processing - Jurafsky and Martin

Baaa!

q0	b	a	!
q0 | q1
q1 | q2
q2 | q2, q3
q3 | q4
q4 |

\[\{q0\}, \{q1\}, \{q1\}, \{q2\} \]

1/18/2015
Baaa!

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
<th>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td>q2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td>q2,q3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>q4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
<th>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q0}</td>
<td>{q1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q1}</td>
<td>{q2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q2}</td>
<td>{q2,q3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q2,q3}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baaa!

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
<th>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td>q2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td>q2,q3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>q4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
<th>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>{q0}</td>
<td>{q1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q1}</td>
<td>{q2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q2}</td>
<td>{q2,q3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{q2,q3}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Speech and Language Processing - Jurafsky and Martin
Couple of Notes

- We didn’t come close to needing \(2^9\) new states. Most of those were unreachable. So in theory there is the potential for an explosion in the number of states. In practice, it may be more manageable.

- Draw the new deterministic machine from the table on the previous slide... It should look familiar.
Compositional Machines

• Recall that formal languages are just sets of strings
• Therefore, we can talk about set operations (intersection, union, concatenation, negation) on languages
• This turns out to be a very useful
 ♦ It allows us to decompose problems into smaller problems, solve those problems with specific languages, and then compose those solutions to solve the big problems.

Example

• Create a regex to match all the ways that people write down phone numbers. For just the U.S. that needs to cover
 ♦ (303) 492-5555
 ♦ 303.492.5555
 ♦ 303-492-5555
 ♦ 1-303-492-5555
 ♦ (01) 303-492-5555
• You could write a big hairy regex to capture all that, or you could write individual regex’s for each type and then OR them together into a new regex/machine.
• How does that work?
Negation

- Construct a machine M_2 to accept all strings not accepted by machine M_1 and reject all the strings accepted by M_1
 - Invert all the accept and not accept states in M_1
- Does that work for non-deterministic machines?
Intersection (AND)

- Accept a string that is in both of two specified languages
- An indirect construction...
 - \(A \land B = \neg(\neg A \lor \neg B) \)

Problem Set 1

- From the Jurafsky and Martin book, end of chapter 2
- Problem 2.1; subsections 2, 4, and 6
- Problem 2.4
- Due Thursday, Jan. 22, in class
Next Week

- On to Chapter 3
 - Crash course in English morphology
 - Finite state transducers
 - Applications
 - Lexicons
 - Segmentation