The Hindi/Urdu Treebank: New Frontiers in Hindi and Urdu Natural Language Processing

Dipti Misra Sharma
LTRC, IIIT, Hyderabad, India, dipti@iiit.ac.in

Owen Rambow
CCLS, Columbia, New York City, USA, rambow@ccls.columbia.edu

Ashwini Vaidya
Linguistics, University of Colorado, Boulder, USA, Ashwini.Vaidya@colorado.edu

Dec 8, 2012

COLING 2012
Overview

- Introduction to the nature of syntactic representations. (Rambow, 15 minutes)
- Introduction to the morphology, syntax, and lexical semantics of Hindi and Urdu. (Sharma, 40 minutes)
- The morphological representation for Hindi and Urdu, including encoding issues, tokenization, part-of-speech tags, and morphological representation. (Sharma and Rambow, 20 minutes)
- The dependency representation (DS) for Hindi and Urdu syntax: principles, representation, and examples. (Sharma, 25 minutes)
- The lexical semantic representation (PB) for Hindi and Urdu: principles, representation, and examples. (Vaidya, 25 minutes)
- The phrase structure representation (PS) for Hindi and Urdu syntax: principles, representation, and examples. (Rambow, 25 minutes)
- Sample initial experiments in Hindi and Urdu NLP using the HUTB. (Sharma and Rambow, 15 minutes).
Overview

- Introduction to the nature of syntactic representations. (Rambow, 15 minutes)
- Introduction to the morphology, syntax, and lexical semantics of Hindi and Urdu. (Sharma, 40 minutes)
- The morphological representation for Hindi and Urdu, including encoding issues, tokenization, part-of-speech tags, and morphological representation. (Sharma and Rambow, 20 minutes)
- The dependency representation (DS) for Hindi and Urdu syntax: principles, representation, and examples. (Sharma, 25 minutes)
- The lexical semantic representation (PB) for Hindi and Urdu: principles, representation, and examples. (Vaidya, 25 minutes)
- The phrase structure representation (PS) for Hindi and Urdu syntax: principles, representation, and examples. (Rambow, 25 minutes)
- Sample initial experiments in Hindi and Urdu NLP using the HUTB. (Sharma and Rambow, 15 minutes).
The Hindi Treebank

• 3 Representations
 – DS: Dependency Structure
 – PB: PropBank (lexical predicate-argument structure)
 – PS: Phrase Structure

• Why have three levels of representation? What does “level of representation” mean, in fact?
What is a Syntactic Representation?

1. Syntactic phenomena (“what”), e.g.:
 - Subject of a verb
 - Relative clause
 - Small clause
 Linguists tend to agree on what phenomena exist

2. Mathematical representation type (“basic how”), e.g.:
 - Phrase structure tree
 - Dependency tree
 - Or something more complicated: graph, LFG, TAG, ...

3. Formal syntactic description (“detailed how”):
 a. Mapping from phenomena to representations (in particular type)
 b. Chosen representation for a specific phenomenon also called analysis
 c. Phenomena extracted in representation are the interpretation
 d. Formal description is a syntactic theory if it makes predictions
Representation Types: Dependency and Phrase Structure

- **Dependency Tree (DS):**
 - One label alphabet, words (= words in a sentence)
 - All nodes labeled with words or empty strings

- **Phrase Structure Tree (PS):**
 - Two disjoint label alphabets, terminals (= words in sentence) and nonterminals
 - All and only interior nodes are labeled with nonterminals
 - Leaves are labeled with terminals or empty strings

- Nothing else is part of the definition!
Example: Small Clauses

- Hindi
 - आतिफ ने सीमा को बेवकूफ समझा
 - Atif ne Seema ko bewakuf samjhaa
 - Atif Erg Seema Acc stupid consider.Pfv
 - ‘Atif considered Seema stupid.’

- English
 - Atif considered Seema stupid
 - Atif considered her stupid
What is the Phenomenon?

• Syntactically and semantically, *consider* takes a clausal complement
 – Atif considered \([\text{clause that she is stupid}]\)
 – Atif considered \([\text{clause her stupid}]\)

• But two problems:
 – No verb
 – *her* is semantically subject of *stupid* but has accusative case, which is unusual (subjects are usually nominative)

• So:
 – Atif considered \([\text{small clause her stupid}]\)
What is the Representation Type?

- For this example, we will show dependency trees and phrase structure trees
Analysis 1a for Small Clauses: No Accusative Case Marking

- Structure represents *her* as subject but not accusative case marking of *her*
Analysis 1b for Small Clauses: Exceptional Case Marking

• Structure represents *her* as subject and accusative case marking through node label.

```
considers
  Subj
  Atif

stupid
  Subj
  her
```

```objective
Obj-ECM
```
Analysis 1a for Small Clauses: No Accusative Case Marking

• Structure represents *her* as subject but not accusative case marking of *her*
Analysis 1b for Small Clauses: Exceptional Case Marking

• Structure represents *her* as subject but not accusative case marking of *her*

Close to analysis adopted in Chomsky (1981)
Note on DS and PS

• These analyses are intuitively very similar
• Formal notion: “consistency” (Fei Xia, see Bhatt, Rambow & Fei 2011)
 – Intuition: very simple and general algorithm can transform consistent DS to PS and *vice versa*
Analysis 2a for Small Clauses: General Monoclausal Analysis

- Structure represents accusative case marking of *her* (as object of matrix verb) but not *her* as semantic subject
Analysis 2b for Small Clauses: Syntactic Monoclausal Analysis

• Structure represents accusative case marking of *her* (as object of matrix verb) and *her* as semantic subject using node label

```
  considers
  Subj  Obj  ObjPred
  Atif  her  stupid
```
Analysis 2b for Small Clauses: Syntactic Monoclausal Analysis

- Structure represents accusative case marking of *her* (as object of matrix verb) and *her* as semantic subject using node label

![Graphical representation](image)

Neo-Paninian analysis
Analysis 2b for Small Clauses: Syntactic Monoclausal Analysis

• Structure represents accusative case marking of *her* (as object of matrix verb) and *her* as semantic subject using node label

```
समझा

आतिफ ने सीमा को बेवकूफ
```

Neo-Paninian analysis from IIIT Hyderabad, Used for DS in Hindi-Urdu Treebank
Analysis 2a for Small Clauses: General Monoclausal Analysis

- Structure represents accusative case marking of *her* (as object of matrix verb) but not *her* as semantic subject.
Analysis 2b for Small Clauses: Syntactic Monoclausal Analysis

- Structure represents accusative case marking of *her* (as object of matrix verb) and *her* as semantic subject using node label

```
considers
  /    \
 k1    k2
Atif  her

k2s
stupid
```

```
S
  /   \   \\
NP    VP
  /     \
Atif considers her

AdjP
  \\
  stupid
```
Analysis 3 for Small Clauses: Raising to Object

- Structure represents accusative case marking of *her* and *her* as semantic subject but requires empty category

```
Constituent representation:

considers

<table>
<thead>
<tr>
<th>Subj</th>
<th>Obj</th>
<th>Obj-Pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atif</td>
<td>her₁</td>
<td>stupid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>e₁</td>
</tr>
</tbody>
</table>
```
Analysis 3 for Small Clauses: Raising to Object

- Structure represents accusative case marking of *her* and *her* as semantic subject but requires empty category

Analysis used for PS in Hindi-Urdu Treebank
Comparison of Representations

• Less Information

 Tree 1a
 \[
 \text{considers} \quad \text{Subj} \quad \text{Obj} \\
 \quad \quad \quad \text{Atif} \quad \text{stupid} \\
 \quad \quad \quad \quad \quad \text{Subj} \quad \text{her}
 \]

 Tree 2a
 \[
 \text{considers} \quad \text{Subj} \quad \text{Obj} \quad \text{Obj2} \\
 \quad \quad \quad \quad \quad \text{Atif} \quad \text{her} \quad \text{stupid}
 \]

• Same Information

 Tree 1b
 \[
 \text{considers} \quad \text{Subj} \quad \text{Obj-ECM} \\
 \quad \quad \quad \text{Atif} \quad \text{stupid} \\
 \quad \quad \quad \quad \quad \text{Subj} \quad \text{her}
 \]

 Tree 2b
 \[
 \text{considers} \quad \text{Subj} \quad \text{Obj} \quad \text{ObjPred} \\
 \quad \quad \quad \text{Atif} \quad \text{her} \quad \text{stupid}
 \]

 Tree 3
 \[
 \text{considers} \quad \text{Subj} \quad \text{Obj} \quad \text{Obj-Pred} \\
 \quad \quad \quad \text{Atif} \quad \text{her} \quad \text{stupid} \\
 \quad \quad \quad \quad \quad \text{Subj} \quad \text{e_1}
 \]
Summary: Syntactic Phenomena, Representation Types, Analyses

• Syntactic phenomena are the empirical data of syntax as part of the science of language
 – Can be very similar across languages

• There can be several possible analyses
 – Some have less information
 – But there can be different analyses that represent the same information differently

• The analyses can be similar in DS and PS

• Lots of choices in treebank design!
Aren’t DS and PS Representations Complementary? NO!

- Syntactic dependency can be encoded in PS, and typically is
- Usual convention: attachment in projection shows type of dependency

```
S
 /   |
NP-SBJ₁  VP
 /  |
  Subject  John
 / |
   likes  NP
    /   
   Athens  Object
```
Aren’t DS and PS Representations Complementary? NO!

- Syntactic constituency is represented in DS
- Usual convention: each node is the word, and the head of the phrase containing it and all descendents
What Does This Mean for NLP?

- Treebanks are not naturally occurring data.
- The guidelines are painstakingly produced by linguists and represent a formal description of the language.
- Annotators understand a sentence, determine what syntactic phenomena exist, and use the guidelines to choose an analysis for the sentence (a structure).
- Users of the treebank can use the guidelines to interpret the structures and get back the syntactic phenomena present.
- These phenomena, and not their representation in the treebank, can be used for NLP in whatever representation chosen by the researcher!
- There is already lots of linguistics in our resources, we just need to make use of that linguistic information!
The Hindi Treebank

• DS: dependency, annotated by hand
• PB: annotated by hand on top of DS, adds information about lexical semantics
 – Does not change trees
 – Adds labels to arcs and features to nodes
• PS: phrase structure, derived automatically from DS+PB
 – Contains less information than DS+PB
 – DS and PS contain different information
Comparison of DS, PB, PS (Sample)

<table>
<thead>
<tr>
<th></th>
<th>DS</th>
<th>PB</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>How?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependency</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Phrase Structure</td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>What?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distinguish unergative/unaccusative</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Distinguish temporal/locative adjuncts</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Distinguish unaccusative/transitive with empty agent</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>
Overview

• Introduction to the nature of syntactic representations. (Rambow, 15 minutes)
• Introduction to the morphology, syntax, and lexical semantics of Hindi and Urdu. (Sharma, 40 minutes)
• The morphological representation for Hindi and Urdu, including encoding issues, tokenization, part-of-speech tags, and morphological representation. (Sharma and Rambow, 20 minutes)
• The dependency representation (DS) for Hindi and Urdu syntax: principles, representation, and examples. (Sharma, 25 minutes)
• The lexical semantic representation (PB) for Hindi and Urdu: principles, representation, and examples. (Vaidya, 25 minutes)
• The phrase structure representation (PS) for Hindi and Urdu syntax: principles, representation, and examples. (Rambow, 25 minutes)
• Sample initial experiments in Hindi and Urdu NLP using the HUTB. (Sharma and Rambow, 15 minutes).