Unsupervised AMR-Dependency Parse Alignment

Wei-Te Chen Martha Palmer

Department of Computer Science University of Colorado Boulder

weite.chen@colorado.edu

April 6th, 2017

How to Represent "Meaning"

• First-Order Logical Form

How to Represent "Meaning"

- First-Order Logical Form
- Semantic Role Labeling (SRL)

```
Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29
```

How to Represent "Meaning"

- First-Order Logical Form
- Semantic Role Labeling (SRL)

```
Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29
```

Abstract Meaning Representation (AMR)

AMR is a semantic representation that expresses the meaning of a sentence

A rooted, acyclic graph

AMR is a semantic representation that expresses the meaning of a sentence

A rooted, acyclic graph

AMR is a semantic representation that expresses the meaning of a sentence

 Relies heavily on predicate-argument structures from PropBank

AMR is a semantic representation that expresses the meaning of a sentence

 Uses reentrance to represent co-reference

AMR is a semantic representation that expresses the meaning of a sentence

 Encodes named entities, wiki-links, and discourse connectives

AMR is a semantic representation that expresses the meaning of a sentence

 Abstracts away from syntactic idiosyncrasies

Graph-based AMR Parser

Graph-based AMR Parser

Separate parsing task into concept identification and relation identification

Graph-based AMR Parser

- Separate parsing task into concept identification and relation identification
- Aim to find a connected graph with a maximum sum of edge (relation) scores

Graph-based AMR Parser

- Separate parsing task into concept identification and relation identification
- Aim to find a connected graph with a maximum sum of edge (relation) scores

Transition-Based AMR Parser

 Generate AMR graphs through conversion from dependency parse trees

Graph-based AMR Parser

- Separate parsing task into concept identification and relation identification
- Aim to find a connected graph with a maximum sum of edge (relation) scores

- Generate AMR graphs through conversion from dependency parse trees
- Design different parsing actions

Graph-based AMR Parser

- Separate parsing task into concept identification and relation identification
- Aim to find a connected graph with a maximum sum of edge (relation) scores

- Generate AMR graphs through conversion from dependency parse trees
- Design different parsing actions
- State-of-the-art system: CAMR (Wang et al. 2015a, 2015b) F_1 : **0.62**

Graph-based AMR Parser

- Separate parsing task into concept identification and relation identification
- Aim to find a connected graph with a maximum sum of edge (relation) scores

Transition-Based AMR Parser

- Generate AMR graphs through conversion from dependency parse trees
- Design different parsing actions
- State-of-the-art system: CAMR (Wang et al. 2015a, 2015b) F_1 : **0.62**

No gold standard word-concept mappings

Review: AMR Aligner

Aligner Strategy I: Align AMR concepts and relations to spans of words

Review: AMR Aligner

Aligner Strategy I: Align AMR concepts and relations to spans of words

Heuristic Aligner

• JAMR (Flanigan et al., 2014)

Review: AMR Aligner

Aligner Strategy I: Align AMR concepts and relations to spans of words

Heuristic Aligner

• JAMR (Flanigan et al., 2014)

Unsupervised Aligner

- ISI Aligner (Pourdamghani et al., 2014)
- Stanford Aligner (Werling et al., 2015)

Aligner Strategy II: Aligns AMR concepts and relations to word nodes in a dependency parse tree

 AMR concept → dependency parse node (one-to-one) alignment

Aligner Strategy II: Aligns AMR concepts and relations to word nodes in a dependency parse tree

- AMR concept → dependency parse node (one-to-one) alignment
- Aim to find better alignments to benefit AMR parsing

6 / 25

Training

Objective Function

$$\Theta = \operatorname{argmax} L_{\Theta}(\mathsf{AMR}|\mathsf{DEP}) \tag{1}$$

$$L_{\Theta}(\mathsf{AMR}|\mathsf{DEP}) = \prod_{(C,D,A)\in\mathbb{S}} P(C|D) = \prod_{(C,D,A)\in\mathbb{S}} \sum_{a\in A} P(C,a|D) \tag{2}$$

where

- S: training samples
- C: AMR
- D: dependency parse
- A: all alignment set between C and D
- a: alignment function

Training with EM Algorithm: E-Step

E-Step estimates all alignment probabilities of a (C, D) pair (in Eq. (3))

By giving the product of feature probabilities (in Eq. (4))

$$P(a|C,D) = \prod_{j=1}^{|C|} \frac{P(c_j|d_{c_j} = a(c_j), d_{c_j^p} = a(c_j^p))}{\sum_{l=1}^{|D|} \sum_{i=1}^{|D|} P(c_j|d_i, d_l)}$$
(3)

$$P(c_j|d_i,d_l) = \prod_{\theta \in \Theta} P_{\theta}(c_j,d_i,d_l)$$
 (4)

where

- c_j : j-th concept in C
- c_i^p : parent node of c_j
- d_c : dependency node aligned by c

Training with EM Algorithm: M-Step

In M-Step, feature probabilities are re-estimated by collecting the count of all AMR-dependency parse pairs

Collect Count

$$cnt_{\theta}(c|d_{c},d_{c^{p}};C,D) = \sum_{a \in A} \frac{P(c|d_{c},d_{c_{p}})}{\sum_{i=0}^{|D|} \sum_{l=0}^{|D|} P(c|d_{i},d_{l})}$$
(5)

Update Probability

$$P_{\theta}(c,d,d^{p}) \leftarrow \sum_{C \in AMR, D \in DEP} \frac{cnt_{\theta}(c|d_{c},d_{c^{p}};C,D)}{\sum_{c} cnt_{\theta}(c|d_{c},d_{c^{p}};C,D)}$$
(6)

Features

- Basic Features
- External Features
 - Lemma
 - Relation
 - Named Entity
 - Semantic Role
- Global Feature

Feature: Basic Match Type

Basic Match Type

- Word Form e.g. "join-01" aligns to *join*
- Numbers, Ordinal Numbers, Date

	Match Type	at Concept	at Leaf
(1)	Word	45.2%	73.4%
(2)	Word (case insensitive)	-	0.9%
(3)	Lemma (case insensitive)	10.8%	0.3%
(4)	Partial match with word	6.1%	8.2%
(5)	Partial match with lemma	0.2%	0.3%
(6)	Numbers	-	3.1%
(7)	Ordinal Numbers	-	2.8%
(8)	Date	-	4.3%
(9)	Others	37.7%	6.5%

Table 1: The rules and distribution of basic match types

External Features - Lemma Probability

Lemma Probability

• $P_{Lemma}(c, d_c) = P(c|Word(d_c))$

External Features - Lemma Probability

Lemma Probability

• $P_{Lemma}(c, d_c) = P(c|Word(d_c))$

 $P_{Lemma}(c = \text{temporal-quanity}, d_c = \underline{old})$

External Features - Lemma Probability

Lemma Probability

• $P_{Lemma}(c, d_c) = P(c|Word(d_c))$

 $P_{Lemma}(c = \text{temporal-quanity}, d_c = \underline{old})$ = $P(\text{temporal-quanity}|Word(\underline{old}))$

External Features - Relation Probability

Relation Probability

• $P_{rel}(c, d_c, d_{c^p}) = P(AMRLabel(c)|Path(d_c, d_{c^p}))$

External Features - Relation Probability

Relation Probability

• $P_{rel}(c, d_c, d_{c^p}) = P(AMRLabel(c)|Path(d_c, d_{c^p}))$

$$P_{rel}(c = 61, d_c = \underline{61}, d_{c^p} = \underline{old})$$

External Features - Relation Probability

Relation Probability

• $P_{rel}(c, d_c, d_{c^p}) = P(AMRLabel(c)|Path(d_c, d_{c^p}))$

$$P_{rel}(c = 61, d_c = \underline{61}, d_{c^p} = \underline{old})$$

= $P(quant|advmod \downarrow num \downarrow)$

External Features - Named Entity Probability

Named Entity Probability

• $P_{NE}(c, d_c) = P(c|NamedEntity(d_c))$

External Features - Named Entity Probability

Named Entity Probability

• $P_{NE}(c, d_c) = P(c|NamedEntity(d_c))$

 $P_{NE}(c = person, d_c = \underline{Vinken})$

External Features - Named Entity Probability

Named Entity Probability

• $P_{NE}(c, d_c) = P(c|NamedEntity(d_c))$

$$P_{NE}(c = \text{person}, d_c = \underline{Vinken})$$

= $P(\text{person}|\underline{PERSON})$

External Features - Semantic Role Probability

Semantic Role Probability

• $P_{SR}(c, d_c, d_{c^p}) = P(AMRLabel(c)|Role(d_{c^p}, d_c))$

External Features - Semantic Role Probability

Semantic Role Probability

• $P_{SR}(c, d_c, d_{c^p}) = P(AMRLabel(c)|Role(d_{c^p}, d_c))$

 $P_{SR}(c = person, d_c = \underline{Vinken}, d_{c^p} = join)$

External Features - Semantic Role Probability

Semantic Role Probability

• $P_{SR}(c, d_c, d_{c^p}) = P(AMRLabel(c)|Role(d_{c^p}, d_c))$

$$P_{SR}(c = \text{person}, d_c = \underline{Vinken}, d_{c^p} = \underline{join})$$

= $P(ARG0|Arg0)$

To ensure that parent concept is aligned to phrase which contains the sub-phrase that aligned by child concept, $R_{CC}(c^p)$ is designed.

Good Alignment

To ensure that parent concept is aligned to phrase which contains the sub-phrase that aligned by child concept, $R_{CC}(c^p)$ is designed.

 Good Alignment temporal-quantity quant unit 61 year 61 old years npadymod

To ensure that parent concept is aligned to phrase which contains the sub-phrase that aligned by child concept, $R_{CC}(c^p)$ is designed.

 Good Alignment temporal-quantity quant unit 61 year 61 old years npadvmod num

To ensure that parent concept is aligned to phrase which contains the sub-phrase that aligned by child concept, $R_{CC}(c^p)$ is designed.

 Good Alignment temporal-quantity quant unit year 61 61 old vears npadvmod

To ensure that parent concept is aligned to phrase which contains the sub-phrase that aligned by child concept, $R_{CC}(c^p)$ is designed.

e Good Alignment

temporal-quantity

quant

unit

61 year

61 years old

npadvmod

To ensure that parent concept is aligned to phrase which contains the sub-phrase that aligned by child concept, $R_{CC}(c^p)$ is designed.

e Good Alignment
temporal-quantity
quant
unit
61 year
61 years old

npadvmod

To ensure that parent concept is aligned to phrase which contains the sub-phrase that aligned by child concept, $R_{CC}(c^p)$ is designed.

e Good Alignment
temporal-quantity
quant
unit
61
year
61
year
old

npadvmod

Penalty

Penalty

Penalty

• Ration Score: Rcc

$$R_{CC}(c) = rac{|W_{child}(c) \cap W(c)|}{|W(c)|} imes penalty(c)$$
 $W(c) = d_c; W_{child}(c) = igcup_{c^{s_i} \in child(c)} d_{c^{s_i}}$
 $penalty(c) = \exp(-|W_{child}(c) \setminus (W_{child}(c) \cap W(c))|)$

Decoding

Search the most possible alignments

- Use beam search algorithm
- Start from leaf concepts, and walk through all concepts

$$\underset{a}{\operatorname{argmax}} P(a|C,D) = \underset{a}{\operatorname{argmax}} \prod_{j=1}^{|C|} R_{CC}(c_j) * P(c_j|d_{c_j} = a(c_j), d_{c_j^p} = a(c_j^p))$$
(7)

• Running Time: $O(|b| * |C| * |D|^2)$ where |b| is the beam size

Data Preparation

Corpus

- AMR Data: The LDC DEFT Phase 2 AMR Annotation Release 1.0
- Gold Standard Dependency Parse: OntoNotes (ON) 5.0

Training Set

- Gold Dep.: Sentences appear in both AMR Release and ON 5.0
- **Auto Dep.**: All sentences in AMR Data with dependency parses generated by ClearNLP.

Test and Development Set

Manually align the AMR concepts and dependency word nodes

		Sent.	Token	
Train	Gold Dep. Auto Dep.	8,276	176,422	
	Auto Dep.	39,260	649,219	
Dev.		409	8,695	
Test		415	8,786	

Aligner Results

Feature Contribution

Data	Feature	Р	R	F_1
Gold Dep.	L	84.0	85.0	84.5
	L + S	85.2	86.3	85.7
	L + S + R	82.8	83.8	83.3
	L + S + R + N	80.9	81.9	81.4
	L	84.9	85.4	85.1
Auto Dep.	L + S	85.7	87.4	86.5
	L + S + R	85.8	87.7	86.7
	L + S + R + N	86.3	88.0	87.1

Incremental Feature Contributions for different features:

• L: lemma

N: NE

• R: relation

• S: semantic role

Aligner Results

Aligner results with different aligners

Data	Aligner	Р	R	F-Score	
	Chen 2015	61.1	53.4	57.0	
Gold Dep.	JAMR	78.5	62.8	69.8	
	ISI	78.6	71.4	74.9	
	Ours	85.2	86.3	85.7	
A 1. D.	Chen 2015	62.4	55.5	58.7	
	JAMR	80.2	65.9	72.4	
Auto Dep.	ISI	80.4	74.9	77.6	
	Ours	86.3	88.0	87.1	

^{*} Our aligner achieves the best F1 score in both data sets since it is designed to align AMRs to dependency parses.

Aligner Results

Using alignments with CAMR Parser

Data	Aligner	Р	R	F-Score	Diff
Gold Dep.	JAMR	62.2	61.0	61.1	+5.3
	ISI	65.3	63.9	64.5	+1.9
	Ours	68.6	64.2	66.4	
Auto Dep.	JAMR	64.2	63.0	63.1	+3.6
	ISI	66.1	65.1	65.6	+1.1
	Ours	68.1	64.7	66.7	

Error Category

• Automatic Parsing Errors - 3.8%

Error Category

- Automatic Parsing Errors 3.8%
- Long Distance Dependencies 14.2%

Error Category

- Automatic Parsing Errors 3.8%
- Long Distance Dependencies 14.2%
- Duplicate Words 17.4%

Error Category

- Automatic Parsing Errors 3.8%
- Long Distance Dependencies 14.2%
- Duplicate Words 17.4%
- Meaning Coverage Errors 40.4%

Conclusion and Future Work

- Present an AMR-Dependency Parse aligner, which estimates the feature probabilities by running the EM algorithm
- Our aligner can be used directly by dependency parse to AMR style parser
- Latent probabilities (i.e. external feature probatilities) can also benefit the AMR Parser

Thank You! Questions

Benefits of AMR

AMR does help some practical tasks

- Event Extraction
 - Liberal Event Extraction and Event Schema Induction (Huang et al., 2016)
 - Incorporate AMR as semantic representation system to detect and represent event structures

Method	ERE: Trigger F ₁ (%)		ERE: Arg $F_1(\%)$		ACE: Trigger F_1 (%)		ACE: Arg F ₁ (%)					
	P	R	F_1	P	R	F_1	P	R	F_1	P	R	F_1
LSTM	41.5	46.8	44.1	9.9	11.6	10.7	66.0	60	62.8	29.3	32.6	30.8
Joint	42.3	41.7	42.0	61.8	23.2	33.7	73.7	62.3	67.5	64.7	44.4	52.7
DMCNN	-	-	-	-	-	-	75.6	63.6	69.1	68.8	46.9	53.5
$Liberal_{PerfectAMR}$	79.8	50.5	61.8	48.9	32.9	39.3	-	-	-	-	-	-
$Liberal_{SystemAMR}$	88.5	42.6	57.5	47.6	30.0	36.8	80.7	50.1	61.8	51.9	39.4	44.8