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Abstract 

 
We introduce a method for learning to reorder 

source sentences. In our approach, sentences are 
transformed into new sequences of words aimed at 
reducing non-local reorderings in phrase translation. 
The method involves automatically extracting 
instances of structural divergences from sentence pairs, 
and automatically learning lexicalized grammatical 
rules probabilistically encoded with bilingual word-
order relations. At run-time, source sentences are 
reordered by applying the rules prior to phrase-based 
machine translation systems. Experiments show that 
our method cleanly captures systematic similarities 
and differences in languages’ grammars, resulting in 
substantial improvement over state-of-the-art phrase-
based translation systems.  
 
1. Introduction 
 

A myriad of Machine Translation (MT) models 
(also known as decoders) have been proposed to 
translate source (e.g., English) sentences into target 
(e.g., Chinese) sentences. Among them is phrase-based 
model, fundamental yet influential to the field of MT.  

Phrase-based systems typically treat sentences as 
sequences of phrases and translate them without the 
knowledge of word orders in languages, leading to 
incorrect few or no changes in phrase orders at the 
target side. Consider the English sentence “They are 
still being detained by the police”. A good Chinese 
translation from Google Translate is “他們 仍 被 警方 
扣 留 ” with the Chinese counterpart of the word 
“detained”, i.e. “扣留”, and that of the phrase “by the 
police”, i.e. “被 警方”, reordered. However, provided 
with another similar sentence “They are still being 
questioned by the police”, Google Translate does not 
correctly order the translated phrases and returns a 
confusing translation “他們 仍然 受到 質疑 警察”. 
Aforementioned two translations differ in accuracy and 
readability, which could be explained by the lack of 

generality in phrase translation pairs: phrase-based 
systems do not exploit structural aspects of languages 
such as word-order regularities or grammars, and put 
too much emphasis on exact wording. Intuitively, by 
pre-ordering the syntactic structures of source 
sentences to match those of target language, the 
reordering demand on subsequent phrase-based 
systems could be reduced and better translations might 
be acquired. 

We present a model that automatically learns to 
transform source-language (SL) sentences into ones 
expected to share similar word orientations with target-
language (TL) sentences via lexicalized syntactic 
reordering rules. The translation of a sentence 
transformed by our reordering model is shown in 
Figure 1. Our model learns reordering rules 
automatically during training by analyzing word-
aligned source-parsed sentence pairs. 

At run-time, our model determines the orientations 
(e.g., straightness or inversion) of the tree nodes in SL 
parse trees and reorders them accordingly. The 
reordered sentences can be used as input to word 
aligners (e.g., GIZA++) or as input to MT systems, in 
view of alleviating potentially negative impact of 
structural divergences on system performance. 
 
2. Related Work 
 

Many researches have focused on modeling word 
distortion or structural reordering during translation. 
Some condition distortion distribution on absolute 
word positions ([3]), on relative positions of phrases 
([6,9]), and even on source words ([1]). Some 
determine structural orders using synchronous rules ([4] 
and Bracketing Transduction Grammar (BTG) rules in 
[12]). And some exploit monolingual (i.e., SL or TL) 
parse trees to capture languages’ word-order 
preferences ([17,5,8]). 

Recently, [18], [11] and [16] presents a version of 
BTG where head words of the structural constituents, 
function words, source-side syntax structures are used 
as reordering evidence, respectively. [19], an extension 



 
Figure 1. An English sentence before and after our syntactic reordering model. 

The Chinese translation is obtained by submitting sentence in (b) to Google Translate. 
The subscripts of linguistic symbols are for easy future reference. 

to [4], further incorporates linguistic knowledge to 
weight the synchronous rules. 

In a study related to our work, [14] uses rewrite 
patterns based on dependency-motivated parse trees to 
reorder source sentences. The number of the extracted 
rewrite patterns is exponential to that of words. In 
contrast, ours is linear to the number of words. 
Recently, [13] describes a model which transforms SL 
sentences to fit TL word orders via reordering rules. 
The main difference from our current work is that their 
rules are hand crafted without lexical information and 
reorderings are strictly required when rules are 
encountered. In this paper, we introduce a method for 
automatically learning lexicalized syntactic reordering 
rules. The significance of lexical and grammatical 
items in our rules, and associated orientation (i.e., 
straightness or inversion) probabilities are estimated by 
discriminative learning approach such as maximum 
entropy or conditional random fields. 
 
3. The Method 
 

We focus on preprocessing SL sentences prior to 
translation. Our goal is to produce reordered source 
sentences expected to have little reordering demand on 
subsequent phrase-based systems such that more 
grammatical translations could be acquired. We now 
formally state the problem that we are addressing. 

Problem Statement: We are given a general purpose 
phrase-based translation system TS, a SL syntactic 
parser SP, and a source sentence e. Our goal is to 
obtain the translation of e via TS that is likely to match 
TL word-order regularities. For this, we apply 
syntactic reordering rules to transform e into e’ that is 
likely to lead to more fluent and grammatical 
translation. 
 
3.1. Learning Reordering Rules 
 

In the first stage of the learning process, we first 
parse the SL sentences in bilingual corpus C via 
syntactic parser SP, then align the bitexts using word 
aligner WA, and at last filter out sentence pairs whose 

word-aligning ratios are not high enough to be though 
of as reliable candidates for training. Cremained={(e, f, 
πe)} where πe stands for the parse tree of the source 
sentence e and f for the target sentence, and its word 
alignment result WAR are delivered to the next stage. 
 

 
Figure 2. Extracting word-order relations. 

 
Figure 3. Sample output on TL spans of source 

nodes. Nodes of source words are omitted. 
In the second stage, we leverage the algorithm in 

Figure 2 to collect training instances for word orders in 
involved languages. In Step (1) of the algorithm, we 
define an instance collection to gather TL structural 
orders with respect to SL ones. For each sentence pair, 
we construct a training instance (Step (2)) and identify 
the TL span of each SL tree node based on SL parse 
tree and word alignments (Step (3)). The TL span of a 
node is denoted as a binary tuple with the first element 
indicating the leftmost TL word position this node can 
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(c) Chinese Translation: 
他們 現 正 由 警方 訊問 

procedure GenerateTrainingCases(Cremained,WAR) 
(1) InstCol=“” 

for each (e, f, πe) in Cremained 
(2)    aInst= “” // a training instance 
(3)    TLSpan=FindTLSpan(f, πe,WAR) 
(4)    for each contiguous word wl and wr in e 
(5a)     Ancestor=FindClsCommonAncestor(wl, wr, πe)
(5b)     Dlhs=FindImmDescendent(Ancestor, wl, πe) 
(5c)     Drhs=FindImmDescendent(Ancestor, wr, πe) 

if TLSpan[Dlhs].max < TLSpan[Drhs].min 
(6)         append ((Ancestor, Dlhs, wl, Drhs, wr), “S”) to aInst

if TLSpan[Dlhs].min > TLSpan[Drhs].max 
(7)         append ((Ancestor, Dlhs, wl, Drhs, wr), “I”) to aInst

   add aInst to InstCol 
return InstCol

TLSpan[PRP]=(1,1)    TLSpan[NP1]=(1,1) 
TLSpan[VBP]=(2,2)   TLSpan[ADVP]=(3,3) 
TLSpan[RB]=(3,3)     TLSpan[NP2]=(5,5) 
TLSpan[VBG]=(NULL,NULL) TLSpan[PP]=(4,5) 
TLSpan[VBN]=(6,6)  TLSpan[VP3]=(4,6) 
TLSpan[IN]=(4,4)      TLSpan[VP2]=(4,6) 
TLSpan[DT]=(NULL,NULL)   TLSpan[VP1]=(2,6) 
TLSpan[NN]=(5,5)   TLSpan[S]=(1,6) 



cover (i.e., minimum index) and the second indicating 
the rightmost (i.e., maximum index). Sample output of 
Step (3), using the parsed English sentence in Figure 
1(a) and its translation “他們 現 仍 被 警方 訊問”, is 
shown in Figure 3. TL spans provide information on 
how the target language orders the corresponding 
source constituents. 

In Step (4) consecutive words in sentence e 
represented by wl and wr are recognized as boundary 
words of two adjacent phrasal constituents. Following 
[15], we also use boundary words as reordering 
evidence. In Step (5a) we traverse the parse tree to 
identify the closest common ancestor Ancestor, 
covering the abovementioned two adjacent phrases, of 
words wl and wr while in Step (5b)/(5c) we denote the 
immediate left-hand-side/right-hand-side descendant of 
Ancestor along the path down to wl/wr as Dlhs/Drhs. 
Syntactic constituents Dlhs and Drhs border on words wl 
and wr. Afterwards, we examine how target language 
orders counterparts of Dlhs and Drhs by heuristically 
comparing TLSpan[Dlhs] and TLSpan[Drhs]. In Step (6) 
and (7) we annotate the attribute tuple 
(Ancestor,Dlhs,wl,Drhs,wr), depicting our lexicalized 
syntactic rules, as “S” (i.e., straightness) and “I” (i.e., 
inversion) respectively. Note that the boundary words 
are also included in the attribute tuple. The rationale is 
better explained by the examples in Figure 4. 

 
Figure 4. Reordering examples. 

While the Chinese translations in Figure 4(a) are in 
order with the English words, similar sub-tree 
(constituents are shown in shade) has crossing 
alignment links in Figure 4(b), implying English and 
Chinese reversely construct the corresponding phrases. 
Since syntactic sub-trees with coarse-grained linguistic 
symbols (e.g., Penn tags) are likely to be the same, our 
model further exploits lexical contents to impose 
desirable word orders.  

In the final stage of training, we employ conditional 
random fields model (CRFs) to estimate the 
significances of lexical and grammatical items in rules 
in determining TL word orders, and to estimate 
orientation (i.e., straightness or inversion) probabilities. 
 
3.2. Run-Time Source Sentence Reordering 
 

At run-time, for each source parse tree πe, we first 
collect its attribute tuples (i.e., (Ancestor,Dlhs,wl,Drhs,wr) 
in Figure 2) and then use the trained CRFs to find the 
most probable sequence of orientation labels (i.e., “S” 
or “I”) of the tuples. Notice that the labels may be 
inter-dependent. 

Based on the labeling result, the reordered source 
sentence expected to have TL-like word orders can be 
obtained. The sentence is then fed to phrase-based 
decoders for translation (see Figure 1). 
 
4. Experiments 
 
4.1. Data Sets and Experimental Settings 
 

We used the first 200K sentence pairs of the news 
portion of Hong Kong Parallel Text (LDC2004T08) as 
our bilingual corpus C. We syntactically parsed the 
English (i.e., source) end via Berkeley parser. GIZA++ 
was applied on C to obtain word alignment. In the 
process of learning context-sensitive reordering rules, 
alignment ratio was set to 0.8. An implementation of 
CRFs, CRF++ (http://crfpp.sourceforge.net/), was used 
in training and at run-time. 
 
4.2. Evaluation Results 
 

Our English-to-Chinese MT training data (whole 
200K sentence pairs) and MT testing data (1035 
English sentences of average 28 words chosen from 
news portion of Hong Kong Parallel Text, excluding 
training data) were pre-arranged by our model as: Utr, 
the original training set; Rtr, the reordered training set; 
Uts, the original test set; Rts, the reordered test set. To 
compare among these training and test sets, the same 
evaluation flow was adopted: GIZA++ imposing word 
alignments on Utr or Rtr, followed by construction of 
phrase table and translating Uts or Rts using Pharaoh 
([7]), and finally evaluating translation quality 
measured by BLEU ([10]). 

Applying Utr and Uts to the above flow constitutes 
our baseline. Utilizing Rtr and Uts amounts to an 
inspection of the effect of syntactic reordering on word 
alignment quality (yet evaluated in the context of MT) 
while utilizing Utr and Rts an inspection on how non-
local structural divergences might influence the 
performance of the phrase-based system, Pharaoh. 

Table 1. Results on translation quality. 
 Utr Rtr 

Uts (1) 23.43 (2) 24.16 

Rts (3) 24.76 (4) 25.71 

PP 

after   the  meeting 
IN    DT     NN

會議        後 

  NP 

PP 

in  Australia 

IN    NNP 

在      澳洲 

NP 

(a)                                    (b) 



As suggested by the translation results in Table 1, 
when exploiting the reordered training sentences 
produced by our model to perform word alignment, the 
translation quality increased by 0.7 BLEU point ((2) vs. 
(1)). If we simply reordered the test sentences, we 
yielded a substantial improvement of 1.3 BLEU points 
over translating the original test sentences ((3) vs. (1)). 
Encouragingly, when source sentence reordering was 
applied to both sets of data, we got the most benefit out 
of the proposed approach: almost 2.3 BLEU-point 
increases ((4) vs. (1)). 

For comparison, Table 2 shows the translation 
quality of three systems: Moses1 using data sets of Utr 
and Uts; (Wang et al., 2007)+ which utilizes manual 
unlexicalized syntactic reordering rules in [13] and 
manual lexicalized ones to acquire its own Rtr and Rts 
(the underlying decoder is Pharaoh); our reordering 
model. Our model achieved an absolute gain of 1.7 
BLEU points over Moses with a complicated 
reordering model. Moreover, the performance of our 
system was comparable to that of (Wang et al., 2007)+, 
indicating that the simple automatic learning procedure 
in Section 3.1 led to similar bilingual word-order 
analyses with human exports’. 

Table 2. System comparison on MT task. 
System Data used BLEU 
Moses Utr+Uts 23.94 

(Wang et al., 2007)+ Rtr+Rts 25.37 
Ours Rtr+Rts 25.71 

 
5. Future Work and Summary 
 

Many avenues exist for future research and 
improvement of our system. Potential features (e.g., 
heights, source spans and head words of tree nodes and 
semantic classes of source words) could be 
incorporated into our model. Additionally, an 
interesting direction to explore is the applicability of 
our model in other distantly-related language pairs 
such as English and Japanese as well as English and 
Arabic. 

In summary, we have introduced a model for 
automatically capturing structural divergences of 
involved languages using discriminative model of 
CRFs. In the evaluation, we have shown that phrase-
based decoder benefits from our source sentence 
reordering model which cleanly learns similar word-
order regularities with human exports’ analyses. 
 

                                                           
1 Its reordering model was configured to msd-bidirectional-fe, 
a sophisticated lexicalized reordering model. 

6. References 
 
1. Yaser Al-Onaizan and Kishore Papineni, “Distortion 

Model for Statistical Machine Translation”, ACL, 2006, 
pp. 529-536. 

2.  Necip F. Ayan and Bonnie J. Dorr, “Going Beyond AER: 
An Extensive Analysis of Word Alignments and Their 
Impact on MT”, ACL, 2006, pp. 9-16. 

3. Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della 
Pietra, and Robert L. Mercer, “The Mathematics of 
Statistical Machine Translation: Parameter Estimation”, 
Computational Linguistics, 1993, 19(2), pp. 263-311. 

4. David Chiang, “A Hierarchical Phrase-based Model for 
Statistical Machine Translation”, ACL, 2005, pp. 263-
270. 

5. Michel Galley, Jonathan Graehl, Kevin Knight, Daniel 
Marcu, Steve DeNeefe, Wei Wang, and Ignacio Thayer, 
“Scalable Inference and Training of Context-Rich 
Syntactic Translation Models”, ACL, 2006, pp. 961-968. 

6. Philipp Koehn, Franz Och, and Daniel Marcu, “Statistical 
Phrase-based Translation”, NAACL, 2003, pp. 48-54. 

7. Philipp Koehn, “Pharaoh: A Beam Search Decoder for 
Phrase-based Statistical Machine Translation”, AMTA, 
2004, pp. 115-124. 

8. Yang Liu, Yun Huang, Qun Liu, and Shouxun Lin, 
“Forest-to-string Statistical Translation Rules”, ACL, 
2007, pp. 704-711. 

9. Franz J. Och and Hermann Ney, “The Alignment 
Template Approach to Statistical Machine Translation”, 
Computational Linguistics, 2004, 30(4), pp. 417-449. 

10. Kishore Papineni, Salim Roukos, Todd Ward and Wei-
Jing Zhu, “BLEU: A Method for Automatic Evaluation 
of Machine Translation”, ACL, 2002, pp. 311-318. 

11. Hendra Setiawan, Min-Yen Kan and Haizhou Li, 
“Ordering Phrases with Function Words”, 2007, ACL, 
pp. 712-719. 

12. Dekai Wu, “Stochastic Inversion Transduction Grammars 
and Bilingual Parsing of Parallel Corpora”, 
Computational Linguistics, 1997, 23(3), pp. 377-403. 

13. Chao Wang, Michael Collins and Philipp Koehn, 
“Chinese Syntactic Reordering for Statistical Machine 
Translation”, EMNLP, 2007, pp. 737-745. 

14. Fei Xia and Michael McCord, “Improving A Statistical 
MT System with Automatically Learned Rewrite 
Patterns”, COLing, 2004, pp. 508-514.  

15. Deyi Xiong, Qun Liu, and Shouxun Lin, “Maximum 
Entropy Based Phrase Reordering Model for Statistical 
Machine Translation”, ACL, 2006, pp. 521-528. 

16. Deyi Xiong, Min Zhang, Aiti Aw, and Haizhou Li, 
“Linguistically Annotated BTG for Statistical Machine 
Translation”, COLing, 2008, pp. 1009-1016. 

17. Kenji Yamada and Kevin Knight, “A Decoder for 
Syntax-based Statistical MT”, ACL, 2002, pp. 303-310. 

18. H. Zhang and D. Gildea, “Stochastic Lexicalized 
Inversion Transduction Grammar for Alignment”, ACL, 
2005, pp. 475-482. 

19. Dongdong Zhang, Mu Li, Chi-Ho Li and Ming Zhou, 
“Phrase Reordering Model Integrating Syntactic 
Knowledge for SMT”, EMNLP, 2007, pp. 533-540 


