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Abstract 

We propose a fusion of Inversion Transduction Grammar 
model with IBM-style notation of fertility to improve word-
aligning performance. In our approach, binary context-free 
grammar rules on the source language, accompanied with 
orientation preferences on the target, and fertilities of words 
are leveraged to construct a syntax-based statistical translation 
model. Our model, inherently possessing the characteristic of 
ITG restrictions and allowing for many consecutive words 
aligned to one and vise versa, outperforms original ITG model 
and GIZA++ not only in alignment error rate (23% and 14% 
error reduction) but in consistent phrase error rate (13% and 
9% error reduction) as well. Better performance in these two 
evaluation metrics will lead to better phrase-based machine 
translation with great possibility. 

Keywords 
Word alignment, inversion transduction grammar, IBM models, 
alignment error rate, parsing, and GIZA++. 

1. Introduction 
Statistical translation model is a model which detects word 
correspondences within sentence pairs whether relied on 
lexical information or syntactic aspects of languages 
involved. In spite of the fact that the methodologies varies, 
the intention is clear—trying to obtain better word 
alignment results since a better translation model implies 
better performance in various linguistic applications. 
Among them are phrase-based machine translation (Och 
and Ney, 2004; David Chiang, 2005; Liu et al., 2006) and 
inference of syntactic translation rules (Galley et al., 2004; 
Galley et al., 2006).  

Since the pioneering work of (Brown et al., 1988), 
there have been a myriad of subsequent researches related 
to statistical translation model. They could mainly be 
classified into two categories: one paying little attention to 
the grammars of the languages (Vogel et al., 1996; Och and 
Ney, 2000; Toutanova et al., 2002) and the other explicitly 
utilizing languages’ structural or syntactic information (Wu, 
1997; Yamada and Knight, 2001; Cherry and Lin, 2003; 
Gildea, 2004; Zhang and Gildea, 2005). With more and 
more accurate syntactic analyzers (such as part-of-speech 
tagger and Stanford parser) being developed and in view of 
the deficiency in modeling grammatical facets of languages 
IBM-like models experience, latter researches have 
received increasing attention. 

To incorporate syntax of involved languages, Yamada 
and Knight (2001) accepted source-language (SL, such as 
English) parse trees as input and made use of reordering, 
inserting and translating operations to transform the input 
parse trees into counterpart target-language (TL, such as 
French) strings. In contrast to flattening the input parse 
trees to do the transformation (reordering, inserting and 
translating) for every node, Wu’s ITG (1997) attempted to 
associate each production rule commonly shared by two 
languages with word orientation. Besides, instead of 
accepting parse trees produced by a monolingual parser, 
Wu’s approach makes possible constructing bilingual parse 
trees synchronously. 

The strengths of two models are discussed in (Zhang 
and Gildea, 2004), which also found data-oriented bilingual 
parsing turned out to outperform tree-to-string model for 
word-level alignment. Nonetheless, in (Wu, 1997), 
constituent categories are not differentiated and the 
probabilities of the straight or inverted orientation of binary 
production rules, rather than trained on real-life cases, are 
all assigned constant. 

Inspired by (Zhang et al. 2006), which suggests 
binarization of synchronous rules improves both speed and 
accuracy of a syntax-based machine translation system, in 
this paper, to capture the systematic differences in 
languages’ grammars, such as SVO (English or Chinese), 
SOV (Japanese) and VSO (Arabic) word orders, we attach 
the information of identical or dissimilar orientation of 
languages’ counterparts onto binary SL CFG rules, 
resulting in grammatical rewrite rules biased on SL side, or 
more specifically, biased ITG rules, bITG for short. For 
instance, the similar VO construct in both English and 
Chinese can be observed from the high probability of the 
bITG rule [ ] VP VP NP→  where square bracket indicates 
the same ordering (straight) of the two right-hand-side 
constituents in both languages when expanding the left-
hand-side symbol. On the contrary, the different VO 
construct in English and Japanese can be modeled using 
high inverted probability of bITG rule  VP VP NP→  
where pointed bracket denotes we expand the left-hand-side 
label into two right-hand-side symbols in reverse 
orientation in two languages. However, both bITG rules are 
inferred from the same binary CFG rule (VP VP NP→ ) 
of the source language, English, only with different order 
preferences on the target end. 



Furthermore, in our model fusing bITG model with 
IBM-style fertilities, many contiguous words on the source 
can be aligned to one word on the target and vice versa 
based on fertility probabilities of words. Originally, Wu’s 
ITG (1997) only allowed for, at most, one-to-one word 
alignment, which may decrease the accuracy of the 
bilingual parse trees and, in turn, the performance on word 
alignments. This one-to-one restriction on word-aligning is 
especially not suitable for language pair like English and 
Chinese since the tokenization work of Chinese sentences 
prior to word alignment would introduce many many-to-
one or one-to-many links in that the resulting segments in 
Chinese sentences are independent of words on English 
side. That is, the segmentations in Chinese can be under- or 
over- segmented for the corresponding words in English. 
As a result, the translation model accommodating more 
than one-to-one correspondences is of great importance, 
especially for such language pair. 

Section 2 and 3 describe our model in detail. Section 4 
shows experimental results. Discussions are made before 
conclusion in section 6. 

2. The Model 
2.1 An Example 
First, an example of how bITG rules are exploited to assist 
in word-aligning sentence pairs is introduced. A more 
formal description of our model will be discussed in 
sequent sections. 

We assume a parallel sentence pair and POS 
information of the SL sentence are fed into our model and it, 
using not only lexical translation rules but the binary SL 
CFG rules accompanied with orientation preferences of 
counterparts on the TL, synchronously parses the bilingual 
sentence pair and yields the word alignments at the leaf 
level of the bilingual parse tree. 

The model assigns probabilities to substring pairs of 
the bilingual sentences after each of them is associated with 
possible syntactic labels on the source side. Take the 
sentence pair and its parse in Figure 1, where spaces in the 
Chinese sentence are used to distinguish the boundaries of 
segments and ∗  denotes the inverted orientation of the 
node’s children on the target, for example. The substring 
pair (positive role, 積極 作用) associated with constituent 
category NP will be assigned a probability. In this 
particular parse, the best probability of parsing (positive 
role, 積極 作用) is the product of probabilities of straight 
bITG rule, [ ] NP JJ NN→ , and lexical translation rules, 
JJ→ positive/積極 and NN→ role/作用 where / denotes 
word correspondence in both languages. The higher 
probability of the rule [ ] NP JJ NN→  than that of the 

inverted rule  NP JJ NN→  not just instructs the model 

to align the right-hand-side counterparts of two languages 
in a straight fashion more, but implies the similar word 
orientation for the syntactic structure in English and 
Chinese. 

On the other hand, we would notice that the beginning 
half “These factors will continue to play a positive role” is 
translated into the back of the Chinese sentence whereas the 
ending half “after its return” is translated into the 
beginning. This phenomenon is very common while 
translating one language into another. The inverted word 
order rules trained on parallel corpus, like  S S PP→ , 
are devised to capture the systematic differences of the 
languages’ grammars. 

In the end, taking into account both the probabilities of 
lexical and grammatical rewrite rules and fertilities of 
words in languages, the model endeavors to find the best 
parse that applies more appropriate production rules to 
match the similarities and dissimilarities of two languages, 
which, in turn, yields better word alignment results. As for 
this example parse, the sentence pair associated with the 
syntactic label S results in best bilingual parse tree whose 
probability is estimated by the product of probabilities of 
the bITG rules,  S S PP→ , and root’s two children, 
(These factors will continue to play a positive role, 這些 條
件 將會 繼續 發揮 積極 作用)S and (after its return, 香港 
回歸 後)PP. 

We actually obtain probabilities of bITG rules, 
consisting of lexical rules and binary SL CFG rules with 
word orientation preferences on the target, and fertilities of 
words from a parallel corpus and SL CFG. Section 3 
describes the training algorithm. 
2.2 Runtime Parsing 
In this section, we extend Wu’s ITG (1997) such that our 
model incorporates the grammatical constituents on the 
source language and accommodates the cases of many 
contiguous words on the source aligned to one on the target 
and vice versa. 

The English-French notation is used throughout this 
paper. E and F denote the source and target language 
respectively and ie  stands for the i-th word in sentence e in 

language E and jf  for the j-th word in sentence f in F. 
As mentioned in (Wu, 1997; Zens and Ney, 2003), the 

ITG constraint allows for a polynomial-time parsing 
algorithm, based on a recursion equation that can be 
resolved by a CYK-style parser. During a parse of a 
sentence pair in our model, a table of , , , ,p s t u vδ , which 
represents the best probability of parsing substring pair 
( )1 1,s t u ve e f f+ +   



 

 
Figure 1. An example sentence pair and its bilingual parse tree 

related to a syntactic label p on the E  side, is constructed. 
We initialize this table with probabilities of one-to-one, 
one-to-zero and zero-to-one word correspondences limited 
on the scope of the sentence pair. Afterwards, relied on the 
work done previously, many-to-many word 
correspondences and parsing results of longer substring 
pairs would unveil themselves in a bottom-top manner. 
Meanwhile, integration of fertilities of words into the 
model further boosts the word-aligning performance. 

Following is the CYK parsing algorithm in our model, 
where we parse a sentence pair ( ),e f , 

( )1 1,m ne e f f , and the POS tag sequence of e is 

( )1, , mt t . In the algorithm, ( )P L t→  denotes 

probability of a lexical rule and t could be /i je f , /ie ε  

and / jfε  where ε  stands for NULL, while 

[ ]( )1 2P  L R R→  and ( )1 2P  L R R→  denote 

probabilities of binary bITG rules where 1R  and 2R  
indicate the right-hand-side syntactic constituents of the 
CFG rules in E. Furthermore, ( )Pr

ie xΦ =  and 

( )Pr
jf xΦ =  represent the probabilities of fertilities of 

and  i je f  being associated with x, respectively. 

Parsing Algorithm 
1. Initial Step  
For  1 ,1i m j n≤ ≤ ≤ ≤  
   ( ) ( ) ( ), 1, , 1, P Pr 1 Pr 1

i i ji i j j i i jt e ft e fδ − − = → × Φ = × Φ =  

   For every grammar rules in iL t E→ ∈  

     ( ) ( ) ( ), 1, , 1, P Pr 1 Pr 1
i jL i i j j i j e fL e fδ − − Φ Φ= → × = × =  

For  1 , 0i m j n≤ ≤ ≤ ≤  
   ( ) ( ), 1, , , P Pr 0

i ii i j j i it et eδ ε
−

= → × Φ =  

   For every grammar rules in iL t E→ ∈  

      ( ) ( ), 1, , , P Pr 0
iL i i j j i eL eδ ε− = → × Φ =  

For 0 ,1 , syntactic labels in i m j n L E≤ ≤ ≤ ≤ ∈  

   ( ) ( ), , , 1, P Pr 0
jL i i j j j fL fδ ε− = → × Φ =  

 
2. Recurrent Step  

English sentence:  These factors will continue to play a positive role after its return 
Chinese sentence: 香港 回歸 後這些條件將會繼續發揮積極作用
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, 1, , ,Similar principle applies for .p s s u vδ −  

2.3 Pruning 
Although the complexity of described algorithm is 
polynomial-time, the execution time grows rapidly with the 
increase in the variety of syntactic labels, from three 
structural labels in (Wu, 1997) to the syntactic categories 
of the source language’s grammar. As a result, pruning 
techniques are essential to reduce the time spent on parsing. 

We adopt pruning in following two manners. The idea 
of the first pruning technique is to only keep parse trees 
whose probabilities fall within the best N α× , where N  
is the number of possible parses for SL substring 1s te e+  
and a constant length of the TL substring, and α  is a real 
number between 0 and 1. In other words, we remove less 
probable parse trees that are not in the best N α×  ones. 

The second pruning technique is related to the ratio of 
the length of SL and TL substring. , , , ,p s t u vδ  will be 

removed, or not calculated, if ( ) ( )t s v u− −  is smaller 

than ratioθ  or larger than 1 ratioθ  where 0 1ratioθ≤ ≤ , since 

few words will be aligned to more than 1 ratioθ  words in 
another language. Applying these pruning techniques 
affects little in the word alignment quality with 
computational overhead reduced significantly. 

3. Probability Estimation 
In the first stage of our probabilistic inference process, a 
word-aligning strategy is applied to acquire the initial word 
alignments from a sentence-aligned corpus. Thereafter, for 
every substring pair of each bilingual sentence pair, the SL 
substring will be related to some possible binary SL CFG 
rules and, based on initial word alignments, right-hand-side 
constituents of these rules will be associated with an 
orientation on the target end. Ultimately, we exploit 
occurrence of detected bITG rules to estimate probabilities. 

3.1 Representation 
By applying any existing word-level alignment method, the 
initial word alignment set A  for parallel corpus C  is 
obtained. A is comprised of elements of the form 

( )2 2

1 1
, , , , ,i j

i jr e f L rhs rel , which represents substring pair 

( )
1 2 1 2

,i i j je e f f  in sentence pair r has L rhs→  as 

the derivation leading to the bilingual structure in the parse 
tree and rel , either straight or inverted, as the cross-
language word order relations of constituents of rhs , 
denoting either a sequence of syntactic labels or a single 
terminating bilingual word pair.  

Take the parse in Figure 1 for example, (after its return, 
香港  回歸  後 )pp would be represented by the 6-tuple 

( )12 3
10 1193, , , ,  ,e f PP IN NP Inverted  where 193 is the 

sentence number of this pair, in the word alignment set A. 
3.2 Training Algorithm 
The algorithm starts with a set H initialized with the initial 
word alignment set A. Then recursively select two elements, 
which have not yet been paired up, from H. If these two 
elements have contiguous word sequence on e side and 
exhibit straight or inverted relation between e and f based 
on word alignments, a new tuple representing these two 
will be added into H. At last, we utilize the occurrence in H 
to infer probabilities of bITG rules, [ ]( )1 2P  L R R→ , 

( )1 2P  L R R→  and ( )P L t→ .  Besides, fertility 

probabilities related to words in both languages are 
calculated in this algorithm as well. 

In the following algorithm, G stands for the set of the 
binary SL CFG rules, W  for the number of entries in set 

W, ( )count ;p Q  for the occurrence of p  in set Q, δ , a 
positive integer, for the tolerance of cross-language 
straight/inverted word order phenomenon, and 

ieΦ  and 

jfΦ  for fertility of the word ie  and jf , respectively. 

Algorithm for Probabilistic Estimation 
=H A  
( ) ( )2 2 2 2

1 1 1 1
For , , , , , , , , , , ,i j i j

i j i jr e f L rhs rel r e f L rhs rel∈ ∈H H  

have not yet been considered  

   ( )2 1If 1i i= −  

       for every  L L L′ → ∈G  

        ( )2 1 2If 1j j j δ+ ≤ ≤ +  

            ( ){ }2 2
1 1

, , , ,  ,Straighti j
i jr e f L L L′= ∪H H  

            ( )2 1 2If 1j j j δ+ ≤ ≤ +  

            ( ){ }2 2
1 1

, , , ,  , Invertedi j
i jr e f L L L′= ∪H H  

    2 1same principle applies when 1i i= −  



Incorporate words aligned to null, each of which is

denoted using 6-tuple representation, in both

languages into H

 

( )2 2

1 1
For , , , , ,i j

i jr e f L rhs rel ∈H  

   ( )If rhs t≠  

    [ ]( ) ( )( )1 2
1 2

count *,*,*, ,  ,Straight ;
P  

L R R
L R R→ =

H

H
 

        ( ) ( )( )1 2
1 2

count *,*,*, ,  , Inverted ;
P  

L R R
L R R→ =

H

H
 

   Else  

     ( )
( )( )count *, *, *, , , * ;

P
L t

L t→ =
H

H
 

( ) ( )Based on  and ,  Calculate Pr  and Pr
i je fΦ ΦA C  

using relative frequency  

4. Experiments 
To experiment, we trained our model on a large English-
Chinese parallel corpus. To evaluate performance, we 
examined alignments produced by the proposed model 
using the evaluation metrics proposed by Och and Ney 
(2000). For comparison, we also trained GIZA++, a state-
of-the-art word-aligning system, on the same corpus. 

4.1 Training 
We used the news portion of Hong Kong Parallel Text 
(Hong Kong news) distributed by Linguistic Data 
Consortium (LDC) as our sentence-aligned corpus C . The 
corpus consists of 739,919 English-Chinese sentence pairs. 
English sentences are considered to be the source while 
Chinese sentences are the target. SL sentences are tagged 
and TL sentences are segmented before fed into any word 
alignment strategy or existing system. The average 
sentence length is 24.4 words for English and 21.5 words 
for Chinese. On the other hand, PTB section 231 production 
rules distributed by Andrew B. Clegg made up of our 
binary SL CFG G. 

4.2 Evaluation 
To evaluate our statistical translation model, 114 sentence 
pairs were chosen randomly from Hong Kong news as our 
testing data set. For the sake of execution time, we only 
selected sentence pairs whose length of English and 
Chinese sentences does not exceed 15, which cover 
approximately 40% of sentence pairs in the whole Hong 
Kong news corpus and where better word-aligning results 
can be obtained using GIZA++. We used the metrics of 
alignment error rate (AER) proposed by Och and Ney 

                                                                 
1 http://textmining.cryst.bbk.ac.uk/acl05/ 

(2000), in which the quality of a word alignment result A  
done by an automatic system is evaluated using 

precision
∩

=
A P

A
, recall

∩
=

A S

S
 and  

( ), ; 1AER
∩ + ∩

= −
+

A S A P
S P A

A S
, where S  (sure) is 

the set whose alignments are not ambiguous and P  
(possible) is the set consisting of alignments that might or 
might not exist ( )⊆S P . Thus, the human-annotated 
alignments may contain many-to-one and one-to-many 
relations. 

In the experiment, we used an existing system, 
GIZA++, as our word-aligning strategy in training 
procedure. In other words, the initial word alignment set 
was produced by GIZA++ with default settings. Following 
table illustrates the experimental results of GIZA++, 
original ITG model in (Wu, 1997), and our extended ITG 
biased on English side. 

Table 1. Results of test data of different systems 

 P R AER F 
E to F .891 .385 .459 .537 

F to E .882 .533 .333 .664 

Refined .879 .635 .261 .737 

ITG .844 .610 .290 .708 

Our  model 
w/o fertility

.866 .638 .263 .735 

Our model 
w/ fertility

.878 .692 .224 .774 

In this table2, P, R and F stand for precision, recall and 
F-measure 3  respectively. The performance of E to F (E 
stands for English and F for Chinese), F to E and 
refinement of both directions, proposed by Och and Ney 
(2000), of GIZA++, are shown, and so is that of original 
ITG, which also trained on the lexical output of GIZA++. 
The results of our translation model without or with the 
capability of making many-to-one/one-to-many links are 
listed in the last two rows. 

Compared with ITG model that does not distinguish 
the constituent categories, our model without fertility 
probability, allowing for at most one-to-one alignment as 
the original ITG does, achieved 9% reduction in the 
alignment error rate. It follows the binary SL CFG rules 
accompanied with ordering preference of the counterparts 
on the TL trained on parallel corpus do capture the 
systematic differences of languages’ grammars and impose 
                                                                 
2 S P  is 85.56%. 

3 Calculated using the formula ( )2 P R P+R× × . 



a more realistic and precise reordering constraints on word 
aligning for the languages pair. 

On the other hand, compared to the refined alignments 
of both directions GIZA++ produced, our model with 
fertility, which is quite similar to the refined method that 
accommodates many-to-many alignment relations, 
increased the recall by 9% while maintaining high 
precision and overall, achieved 14% alignment error 
reduction (increased F-measure by 5%). 

5. Discussion 
In this section, we examine the learnt similarity (straight) 
and difference (inverted) in two languages’ grammars in 
aiding the process of word alignment of our model by 
means of adjacency feature and cohesion constraint, 
mentioned in (Cherry and Lin, 2003). Subsequently, to 
evaluate the possibility of leading to better translation 
performance of a phrase-based MT model if provided the 
output of our model, we adopt the recently-proposed metric, 
consistent phrase error rate (CPER) by (Ayan and Dorr, 
2006). 

5.1 Straight/Inverted Orientation 
To evaluate the assistance of straight orientation of the 
rules in alignment process, the accuracy of adjacent 
alignments made by our model is shown in Table 2 and that 
of refined results of GIZA++ is illustrated for comparison. 
An ordering, depending on the position of the English word 
in the sentence, is imposed in order to examine the feature 
since alignments must have orders before links exhibiting 
adjacency feature exist. 

Table 2. Examination of adjacent links 

 Compared to 
sure links 

Compared to 
possible links 

Refined .835 .869 

Our model 
w/ fertility 

.863 .881 

Further, we examine whether the inverted orientation 
of our binary bITG rules does capture the diversities of two 
grammars and help to make correct crossing links if 
necessary, or not. For that purpose, after the acquisition of 
the dependencies of the source sentences by using Stanford 
parser, the percentage of links violating cohesion constraint, 
the rate of mapped dependency tree in Chinese having 
crossing dependencies, is computed. 

Table 3. Percentage of links violating cohesion constraint 

 Percentage 
Refined .044 

Our model w/ fertility .037 

We observed 1% to 3% increase in making correct 
adjacent alignments in Table 2 while in Table 3, our model 
achieved 16% reduction in percentage of links violating 
cohesion constraint. Above statistics indicate that the 

probabilities related to straight and inverted word orders of 
ITG rules biased on SL in our model not only impose a 
more suitable alignment constraints but capture the 
grammatical relations in two languages, which overall 
results in better word alignment quality. 
5.2 CPER 
According to Ayan and Dorr (2006), the intrinsic 
evaluation metric of AER examines only the quality of 
word-level alignments but correlates poorly with MT 
community-standard metric—BLEU score. As a result, we 
exploit CPER, correlating better with BLEU, to evaluate 
alignments in the context of phrase-based MT. Precision, 
recall and CPER are computed as 

,  A G A G

A G

P P P P
P R

P P
∩ ∩

= = , and  

2
1

P R
CPER

P R
× ×

= −
+

 if the sets of phrases, AP  and GP , 

generated by an alignment A and manual alignment G 
respectively, are known. 

From Table 4, we notice proposed bITG model with 
fertility yields lowest CPER, with great chance contributing 
to higher BLEU if a phrase-based MT system accepts the 
output of our model. 

Table 4. Reports on CPER 

 P R CPER 
E to F .479 .383 .574 
F to E .544 .518 .470 

Refined .573 .606 .411 
ITG .569 .569 .431 

Our  model 
w/o fertility

.598 .597 .402 

Our model 
w/ fertility 

.624 .626 .375 

6. Conclusion 
To combine the strengths of competing models, a thought-
provoking fusion of IBM-style fertility notation with 
syntax-based ITG model is described. In our model, 
straight/inverted binary bITG rules, which bypasses the 
problem that commonly-shared grammatical rules of two 
languages are difficult to design manually, are statistically 
trained and devised to boost the word alignment quality. 
The proposed bITG model with fertilities reduced AER by 
14% to 23% and CPER by 9% to 13% comparing to 
GIZA++ and Wu’s ITG (1997), and lower CPER suggests 
better translation performance if a phrase-based MT is 
chained after our word-level alignment output. In this paper, 
the performance of ITG models trained on large-scale 
parallel corpus is shown for the first time and the result is 
inspiring. 
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