Computational Lexical Semantics

LING 7800-006
Christian Fellbaum & Martha Palmer
7/7/2011

Outline

• What would help the computer? - Palmer
• How does WordNet make sense distinctions? - Fellbaum
• What enhancements are offered by VerbNet and FrameNet that enrich the sense distinctions? - Palmer
• Next steps – Karin Verspoor (Guest Lecturer)

What is meaning?

... just piling up words, one after the other, won't do much of anything until something else has been added. That something is named quite precisely by Anthony Burgess in this sentence from his novel *Enderby Outside* (1968):

– And the words slide into the slots ordained by syntax, and glitter as with atmospheric dust with those impurities which we call meaning.

Stanley Fish,
How to Write a Sentence: And How To Read One, p.2
From Mark Liberman’s Language Log, June 14, 2011

Natural Language Processing - 3 Modules or “compartments”

• Syntax
 – Grammars, parsers, parse trees, dependency structures
• Semantics
 – Subcategorization frames, semantic classes, ontologies, formal semantics
• Pragmatics
 – Pronouns, reference resolution, discourse models
Syntactic Categories

• Nouns, pronouns, Proper nouns
• Verbs, intransitive verbs, transitive verbs, ditransitive verbs (subcategorization frames)
• Modifiers, Adjectives, Adverbs
• Prepositions
• Conjunctions

Syntactic Parsing

• The cat sat on the mat.
 Det Noun Verb Prep Det Noun

• Time flies like an arrow.
 Noun Verb Prep Det Noun

• Fruit flies like a banana.
 Noun Noun Verb Det Noun

Parses

Simple Context Free Grammar in BNF

S → NP VP
NP → Pronoun
 | Noun
 | Det Noun
 | Det Adj Noun
 | NP PP
PP → Prep NP
V → Verb
 | Aux Verb
VP → V
 | V NP
 | V NP NP
 | V NP PP
 | VP PP
How can a grammar be used to build a parse tree?

- Search through a state space representation of all possible parse trees
- Each “path” in the search space corresponds to a sequence of grammar rules that represent one specific parse tree
- Each “operator” that moves from one state to the next is one grammar rule

Lexicon

<table>
<thead>
<tr>
<th>Noun</th>
<th>Noun</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>flies</td>
</tr>
<tr>
<td>mat</td>
<td>time</td>
</tr>
<tr>
<td>the</td>
<td>arrow</td>
</tr>
<tr>
<td>a</td>
<td>an</td>
</tr>
<tr>
<td>sat</td>
<td>flies</td>
</tr>
<tr>
<td>on</td>
<td>time</td>
</tr>
<tr>
<td>flies</td>
<td>like</td>
</tr>
</tbody>
</table>

Lexicon with Roots

<table>
<thead>
<tr>
<th>Noun</th>
<th>Noun</th>
<th>Noun</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat,cat</td>
<td>flies,fly</td>
<td>mat,mat</td>
</tr>
<tr>
<td>mat,mat</td>
<td>time,time</td>
<td>arrow,arrow</td>
</tr>
<tr>
<td>det,det</td>
<td>an,an</td>
<td>verb,verb</td>
</tr>
<tr>
<td>on,prep</td>
<td>like,like</td>
<td></td>
</tr>
</tbody>
</table>

Parses

The cat sat on the mat

S → NP, VP

S
 NP
 VP
Parses

The cat sat on the mat

S → NP, VP
NP → Det, N

Parses

The cat sat on the mat

S → NP, VP
NP → Det, N
VP → V

Simple Context Free Grammar in BNF

S → NP VP
NP → Pronoun
| Noun
| Det Adj Noun
| NP PP
PP → Prep NP
V → Verb
| Aux Verb
VP → V
| V NP
| V NP NP
| V NP PP
| VP PP
Structural Ambiguities

- It's very important to separate PP's that are part of the verb subcategorization frame from PP's that modify the entire event.

 - The man saw the woman on the hill with the telescope.
 - The man saw the woman on the hill with the telescope.

Multiple Parses for a single sentence

Multiple parses for a single sentence

Time flies like an arrow.

Parses

The old can can hold the water.
Structural ambiguities

- *That factory can can tuna.*
- *That factory cans cans of tuna and salmon.*

Lexicon

The old can can hold the water.

- Noun(can, can) → Verb(hold, hold)
- Noun(cans, can) → Verb(holds, hold)
- Noun(water, water) → Aux(can, can)
- Noun(hold, hold) → Adj(old, old)
- Noun(holds, hold)
- Det(the, the)

Simple Context Free Grammar in BNF

\[
\begin{align*}
S & \rightarrow NP \ VP \\
NP & \rightarrow Pronoun \\
& \quad | Noun \\
& \quad | Det \ Adj \ Noun \\
& \quad | NP \ PP \\
PP & \rightarrow Prep \ NP \\
V & \rightarrow Verb \\
& \quad | Aux \ Verb \\
VP & \rightarrow V \\
& \quad | V \ NP \\
& \quad | V \ NP \ NP \\
& \quad | V \ NP \ PP \\
& \quad | VP \ PP \\
\end{align*}
\]

Top-down parse in progress

The, old, can, can, hold, the, water

\[
\begin{align*}
S & \rightarrow NP \ VP \\
NP & \rightarrow NP? \\
NP & \rightarrow Pronoun? \\
& \quad | Pronoun? \ fail \\
NP & \rightarrow Noun? \\
& \quad | Noun? \ fail \\
NP & \rightarrow Det \ Adj \ Noun? \\
& \quad | Det? \ the \\
& \quad | Adj? \ old \\
& \quad | Noun? \ Can \\
Succeed. \\
VP? \\
\end{align*}
\]
Top-down parse in progress

[can, hold, the, water]

VP → VP?
 V → Verb?
 Verb? fail
 V → Aux Verb?
 Aux? can
 Verb? hold
 succeed
 succeed
 fail [the, water]

Top-down approach

• Start with goal of sentence
 S → NP VP
 S → Aux NP VP NP
• Will try to find an NP 4 different ways before trying a parse where the verb comes first.
• What would be better?

Bottom-up approach

• Start with words in sentence.
 • What structures do they correspond to?
 • Once a structure is built, kept on a CHART.
Probabilistic Context Free Grammars

- Adding probabilities
- Lexicalizing the probabilities

Simple Context Free Grammar in BNF

\[
\begin{align*}
S & \rightarrow \text{NP VP} & [0.80] \\
S & \rightarrow \text{Aux NP VP} & [0.15] \\
S & \rightarrow \text{VP} & [0.05] \\
\text{NP} & \rightarrow \text{Pronoun} & [0.35] \\
\text{NP} & \rightarrow \text{Proper-Noun} & [0.30] \\
\text{NP} & \rightarrow \text{Det Nominal} & [0.20] \\
\text{NP} & \rightarrow \text{Nominal} & [0.15] \\
\text{Nominal} & \rightarrow \text{Noun} & [0.75] \\
\text{Nominal} & \rightarrow \text{Nominal Noun} & [0.20] \\
\text{Nominal} & \rightarrow \text{Nominal PP} & [0.05] \\
\text{VP} & \rightarrow \text{Verb} & [0.35] \\
\text{VP} & \rightarrow \text{Verb NP} & [0.20] \\
\text{VP} & \rightarrow \text{Verb NP PP} & [0.10] \\
\text{VP} & \rightarrow \text{Verb PP} & [0.15] \\
\text{VP} & \rightarrow \text{Verb NP NP} & [0.05] \\
\text{VP} & \rightarrow \text{VP PP} & [0.15] \\
\text{PP} & \rightarrow \text{Prep NP} & [1.00]
\end{align*}
\]

Also for all Vocabulary items

Simple Context Free Grammar in BNF

\[
\begin{align*}
S & \rightarrow \text{NP VP} & [0.80] \\
S & \rightarrow \text{Aux NP VP} & [0.15] \\
S & \rightarrow \text{VP} & [0.05] \\
\text{NP} & \rightarrow \text{Pronoun} & [0.35] \\
\text{NP} & \rightarrow \text{Proper-Noun} & [0.30] \\
\text{NP} & \rightarrow \text{Det Nominal} & [0.20] \\
\text{NP} & \rightarrow \text{Nominal} & [0.15] \\
\text{Nominal} & \rightarrow \text{Noun} & [0.75] \\
\text{Nominal} & \rightarrow \text{Nominal Noun} & [0.20] \\
\text{Nominal} & \rightarrow \text{Nominal PP} & [0.05] \\
\text{VP} & \rightarrow \text{Verb} & [0.35] \\
\text{VP} & \rightarrow \text{Verb NP} & [0.20] \\
\text{VP} & \rightarrow \text{Verb NP PP} & [0.10] \\
\text{VP} & \rightarrow \text{Verb PP} & [0.15] \\
\text{VP} & \rightarrow \text{Verb NP NP} & [0.05] \\
\text{VP} & \rightarrow \text{VP PP} & [0.15] \\
\text{PP} & \rightarrow \text{Prep NP} & [1.00]
\end{align*}
\]

Computing Probabilities

\[
P(T, S) = \prod_{i=1}^{n} P(RHS_i | LHS_i)
\]

Stop! \[P(T, S) = 0.05 \times 0.35 \times 0.02 = 0.0035 \]
Verb Subcategorization Frames

- Each verb has a unique meaning associated with the event or state it is describing or referencing.
- This meaning is intrinsically linked to the number of participants in the event or state.
- Verbs are typically divided into classes based on the number of participants, 1, 2 or 3.

Computing Probabilities

\[P(T_{\text{left}}) = 0.05 \cdot 0.20 \cdot 0.20 \cdot 0.75 \cdot 0.30 \cdot 0.60 \cdot 0.10 \cdot 0.40 = 2.2 \times 10^{-6} \]

\[P(T_{\text{right}}) = 0.05 \cdot 0.10 \cdot 0.20 \cdot 0.15 \cdot 0.75 \cdot 0.75 \cdot 0.30 \cdot 0.60 \cdot 0.10 \cdot 0.40 = 6.1 \times 10^{-7} \]

One participant

- Intransitive
 - *John* slept until noon.
 sleep(John)
 - *Mary* laughed hysterically.
 laugh(Mary)
 - *Jill* cried copiously.
 cry(Jill)
Two participants

• Transitive
 – John fixed the clock.
 fix(John, clock)
 – Mary built a house.
 build(Mary, house)
 – Jill cut the bread.
 Cut(Jill, bread)

Three participants

• Ditransitive
 – John gave Mary a solitaire.
 give(John, Mary, solitaire)
 – Mary sent Jill a package.
 send(Mary, Jill, package)
 put(Jill, book, table)

Simple Context Free Grammar in BNF

S → NP VP [.80]
S → Aux NP VP [.15]
S → VP [.05]
NP → Pronoun [.35]
NP → Proper-Noun [.30]
NP → Det Nominal [.20]
NP → Nominal [.15]
Nominal → Noun [.75]
Nominal → Nominal Noun [.20]
Nominal → Nominal PP [.05]
VP → Verb [.87] {sleep, cry, laugh}
VP → Verb NP [.03]
VP → Verb NP PP [.00]
VP → Verb PP [.05]
VP → Verb NP NP [.00]
VP → VP PP [.05]
PP → Prep NP [.10]
Training data for Statistical Parsers

- How does the computer learn the probabilities?
- Lots and lots of parsed sentences
- 50K WSJ sentences

A TreeBanked Sentence

Analysts have been expecting a GM-Jaguar pact that would give the U.S. car maker an eventual 30% stake in the British company.

Headlines

- Police Begin Campaign To Run Down Jaywalkers
- Iraqi Head Seeks Arms
- Teacher Strikes Idle Kids
- Miners Refuse To Work After Death
- Juvenile Court To Try Shooting Defendant

What else?
Thematic roles are consistent across different syntactic realizations: **canonical form**

Joe broke the projector.
Syntax:
NP
V
NP
Thematic Roles:
AGENT
REL
PATIENT

The projector broke.
Syntax:
NP
V
Thematic Roles:
PATIENT
REL

The projector was broken.
Syntax:
NP
V
Thematic Roles:
PATIENT
REL
AGENT

The projector was broken (by Al).
Syntax:
NP
V
(PP)
The same sentence, PropBanked

PropBank?

- Semantic information over the syntactically parsed (i.e. treebanked) text
- Semantic information -> predicate argument structure of a verb or a relation (frame-based)
- The predicate argument structure is specific to the verb or relation in question
- Seeks to
 1. provide thematic role labels across different syntactic realizations of the same verb
 2. assign general functional tags to all modifiers or adjuncts to the verb

PB seeks to provide thematic role labels across different syntactic realizations”

- Uuuuuusally...
 - Arg0 = agent
 - Arg1 = patient
 - Arg2 = benefactive / instrument / attribute / end state
 - Arg3 = start point / benefactive / instrument / attribute
 - Arg4 = end point

PB seeks to assign functional tags to all modifiers or adjuncts to the verb

- Variety of ArgM’s:
 - TMP - when? yesterday, 5pm on Saturday, recently
 - LOC - where? in the living room, on the newspaper
 - DIR - where to/from? down, from Antarctica
 - MNR - how? quickly, with much enthusiasm
 - PRP/CAU -why? because ..., so that ...
 - REC - himself, themselves, each other
 - ADV - hodge-podge, miscellaneous, “nothing-fits!”
 - PRD - this argument refers to or modifies another
Thematic roles - Saeed

• AGENT
 – Initiator of action, capable of volition
 – *Hentry cooked the books.*
 – *The horse jumped the fence.*

• PATIENT
 – Affected by action, undergoes change of state
 – *David trimmed his beard.*
 – *The sun melted the butter.*

Thematic Roles (cont.)

• THEME
 – Entity moving, or being “located”
 – *Paola threw the ball.*
 – *The cup is on the table.*

• EXPERIENCER
 – Perceives action but not in control
 – *Martha felt ill.*
 – *Chris saw the pen drop.*

Thematic Roles (cont.)

• BENEFICIARY
 – For whose benefit action is performed
 – *They baked me a cake.*
 – *The Smiths rented an apartment for their son.*

• INSTRUMENT
 – Intermediary/means used to perform an action
 – *He shot the wounded buffalo with a rifle.*
 – *The surgeon performed the incision with a scalpel.*

Thematic Roles (cont.)

• LOCATION – place of object or action
 – *The monster was hiding in the anxiety closet.*
 – *The band played on the state.*

• SOURCE – starting point
 – *The plane took off from Nairobi.*
 – *We heard the rumor from a friend.*

• GOAL – ending point
 – *Martha handed her license to the policeman.*
 – *Alison lectured to the class.*
Thematic role assignments

– [Martha] handed [her license] [to the policeman.]
– [Al] lectured [to the class].
– [Al] lectured [to the class] [on semantics].
– [Al] lectured [the class].
– [Martha] raised [the car] [with a jack.]
– [Martha] crashed [the car] [with a resounding boom.]

NLP Components - Pipeline

• End of Sentence Detection – MxTerminator
• Tokenization (finding word boundaries)
• Named entity/nominal entity detection
• Topic detection
• Part-of-speech tagging - MxPOST
• Parsing – Collins parser (or Charniak, or Klein)
• Semantic role labeling – ASSERT (Pradhan, CU)
• Sense tagging – Dmitriy Dligach

Thematic role assignments

– [Martha_{AGENT}] handed [her license_{THEME}] [to the policeman.}_{GOAL}]
– [Al_{AGENT}] lectured [to the class_{GOAL}].
– [Al_{AGENT}] lectured [to the class_{GOAL}] [on semantics}_{THEME}].
– [Al_{AGENT}] lectured [the class_{PATIENT}].
– [Martha_{AGENT}] raised [the car_{THEME}] [with a jack.}_{INSTRUMENT}]
– [Martha_{AGENT}] crashed [the car_{PATIENT}] [with a resounding boom.}_{ARGM-MANNER}].

NLP Pipeline
Leave behind, leave alone...

– **John left his keys at the restaurant.**
 We left behind all our cares during our vacation. They were told to leave off their coats.
 Leave the young fawn alone.

Leave the nature park just as you found it.
I left my shoes on when I entered their house. When she put away the food she left out the pie. Let's leave enough time to visit the museum.

He'll leave the decision to his wife.
When he died he left the farm to his wife. I'm leaving our telephone and address with you.