Arabic PropBank and Arabic VerbNet

Yahya Aseri

1-Introduction

Lexical resources

English

- WordNet (✓)
- VerbNet (✓)
- PropBank (🗸)
- FrameNet (✓)

• Arabic :

- PropBank (✓)
- VerbNet (✓)
- WordNet (✓)
- FrameNet (X)

semlink

- WN and VN are mapped
- PB and VN (?)

1- Introduction

- The main questions:
- What are the challenges that computational linguists encountered when they tried to apply these ideas (PB or VN) on Arabic?
- What are the adaptations that have been made?

1-Introduction

• Outlines:

- 1) A window on the Arabic Morphology
- 2) Arabic PropBank (APB)
 - Paper: Martha and others (2008) A Pilot Arabic Propbank
- 3) Arabic VerbNet (AVN)
 - Paper: Mousser (2010) A Large Coverage Verb Taxonomy for Arabic
- 4) Mapping the APB to AVN.
- 5) My final project

- Arabic is a root- template language
 - This means two properties:
 - 1) Given a root, different lexical words are produced from this root by variable templates (productivity).

- The root consists of either 3 or 4 consonants.
 - 80% are three-consonant root verbs

2) The second property:

Given a certain template, different **lexical words** across the lexicon are formed from variable roots (regularity).

What does this mean?

• Two lexical properties: Productivity and regularity are relevant to the morphological system.

productivity

	Base form		derived form	
root	Base (4)	Deverbal nouns	Derived verb (11)	Deverbal nouns (8)
d/r/b	D <mark>araba</mark> 'hit'	D <mark>a:</mark> rib	Da:raba	m <mark>a</mark> Drub
k/t/b	k <mark>ata</mark> ba 'wrote'	K <mark>a:ti</mark> b	s <mark>a:ta</mark> ba	m <mark>a</mark> kt <mark>u</mark> b
s/r/q	s <mark>araqa</mark> 'stole'	s <mark>a:</mark> ariq	s <mark>a:raqa</mark>	m <mark>a</mark> sruq
w/S/I	w <mark>a</mark> Sala 'arrived	w <mark>a:</mark> Sil	w <mark>a:sala</mark>	m <mark>a</mark> wS <mark>u</mark> l
k/s/r	k <mark>asara</mark> ' broke'	k <mark>a:si</mark> r	ka:sara	maksur
j/l/s	jalasa' sit'	j <mark>a:li</mark> s	ja:lasa	majlus

Regularity

We care about semantics and syntax So;

Let's focus on the verb and ask about the morphological interaction with semantics and syntax

- Morphological interaction with syntax and semantics
- Questions:
 - Are there syntactic and semantic correlations between derived verbs and their original ones/ base? (productivity)
 - For verbs that share the same morphological template across the lexicon, Do they also share some syntactic and semantic generalizations? (regularity)
 (my final project)

- Derivation and syntactic and semantic correlations:
- The effects of derivational operations on the semantic and syntactic:
 - 1) changing the valence
 - 2) creating a new verb
 - 3) changing the aspect of the event.
- In general, derived verbs often share the core meaning of the base verb.

Classical dictionaries:

• The root is the entry and all words derived from it are listed under this root:

(Root):

- Base verb
- Derived verbs
- Deverbal nouns
- Adjectives

How did they deal with this issue in the APB and the AVN?

• Design:

- The design is very similar in terms of the steps to the design steps taken for previous language:
- Consists of two parts:
- 1) Framefiles (lexicon)
 - frame for each predicate:
 - Predicate
 - Framesets
 - Description
 - Arguments
 - example
- 2) Annotated corpus:
 - syntactically parsed text provided by Arabic TB.

Challenges and adaptation: 1) Lexical entry in the frame file:

- Two approaches for choosing a lexical entry:
 - 1) Root approach:
 - High level of abstraction.
 - It does not meet the purpose of the PB

2) Lemma approach:

- good for capturing the argument structure for every single verb.
- Risk of losing the connection among them.

Challenges and adaptation: 2) Pro-drop subject:

- Arabic is a pro-drop subject language.
 - example:

سوف أعود إلى نيويورك

New York | to | come back | will

- How do we tag this missing argument?
 - Decision has been made by ATB
 - Creating a trace *

Challenges and adaptation:3) Passive Voice:

- The distinction between passive voice and active is based on the short vowels combined with the root of the verb.
- Arabic script is underspecified by nature for short vowels.
- Example: (passive /active?)

 With the key | the door | open
 The decision has been made by ATB by specifying passive on the tree.

- Challenges and adaptation:4) The Subject and PP issue:
- Frequently, Arabic allows a PP that substitutes an Argument.

• This PP is tagged by concatenating the two nodes

Challenges and adaptation: 5) ARG-M:

There is no deference between EPB and APB in terms of the ARGs, however, there are some differences between them in ARG-M:

English	Arabic
_	CND
_	INS
ADJ	_
PRD	_
DSP	_
MOD	_
NEG	_
REC	

nent View				
0	1	2	3	
4	5	M-ADV (A)	M-CAU	
CND (F)	M-COM (O)	M-DIR (D)	M-DIS	
EXT (X)	M-GOL (G)	M-INS (N)	M-LOC	
MNR (M-PRP (R)	M-SLC (S)	M-TER	
ТМР (Т)	M-PRX (P)	M-PRR (Q)	ERASE	

Current status:

Verbs		Nominals			
Files	Pred	FSets	Files	Pred	FSets
3220	3220	4347	1940	1940	2241

Annotate:

- Modern Standard Arabic (Newswires)
- Some Dialects (Egyptian)

VerbNet

- Arabic VerbNet exploits Levin's verb classes and the procedure of developing English VN (2005).
- It has been built on the assumption that Verb Classes' idea can be transferred to Arabic with some adaptations.
- Basic Approach:
 - They used Levin's classes and some English novel classes.
 - Members of each class are translated to Arabic and expanded by using synonymy, hyponymy, <u>hypernymy</u>

Arabic VN design:

- similar to the EVN design
 - verbs are grouped into classes based on their semantic and syntactic behaviors

- Each class is organized in a hierarchal way:
 - Prototypical verb
 - Members
 - Thematic roles
 - Syntactic frame
 - Semantic description

- Challenges and adaptation:
- 1) derived verbs
- The effects of derivational operations on the semantic and syntactic could be
 - 1) changing the valence
 - 2) creating a new verb
 - 3) changing the aspect of the event.
- grouping verbs into classes results in losing the connection between derived verbs and the original form/base verb.

> adaptations:

Added to another class:

If a derived verb is deferent from the original class, but it shares the properties of an existed class, it is added to that class.

subclass

If a derived verb corresponds to the original class, but it adds additional semantic predicates separating it from the meaning of the original class, subclass is created

Sibling class:

If a derived verb does not fit any class and the effect of derivation is only valence change. a sibling class is created and linked to the original one.

• Challenges and adaptation:

2) diathesis alternations:

- Preliminary study about diathesis alternations in Arabic was required to determine the deference between Arabic and English.
- 65% of alternations in English are also available in Arabic.
- Specificity of Arabic is due to the **morphological operations.**
- <u>e.g</u> :
 - _amuse class:
 - **English :** 6 frame (with two alternations)
 - Arabic : 4 frame (delete one and adds one)
- Can we still talk about the same class when we add or delete some alternations in the target language? (sibling class)

Challenges and adaptation:

3) Class divergence

- One class in English could be split into two groups of verbs/classes in Arabic:
 - Example:
- class: manner_of_speaking.
 - English: one class Arabic : two classes

Group 1	Group 2
Agent- topic- recipient	Agent
waswas 'whisper'	tamtama 'mumble'
hashasa 'swish'	walwala 'make a howl'
awhaa 'reveal'	gaga 'growl'
hamasa 'whisper'	damdama 'burr'
etc	etc

- Challenges and adaptation:
 4) Integrating two classes:
 - The properties of separating two class in English do not exist in Arabic
 - Class: gobble and devour
 - they have the same properties in Arabic
 - 5) Classes are not existed in Arabic:
 - Class: Debore

Challenges and adaptation:

6) Creating new classes.

- Levin's classes did not fit the event structure of some Arabic verbs.
 - Sala: " walked during the night"
 - class of motion (like 'run'), but it adds a new predicate describing the property of walking during a specific time during the day or night.

back to the morphological regularity in the lexicon

- 5- Mapping the APB to the AVN
- Mapping based on the morphological template
 productivity

	Base form		derived form	
root	base	Deverbal nouns	Derived verb	Deverbal nouns
d/r/b	D <mark>ara</mark> ba 'hit'	D <mark>a:</mark> rib	Da:raba	m <mark>a</mark> Dr <mark>u</mark> b
k/t/b	k <mark>ataba</mark> 'wrote'	K <mark>a:ti</mark> b	sa:taba	m <mark>a</mark> kt <mark>u</mark> b
s/r/q	s <mark>araqa</mark> 'stole'	s <mark>a:</mark> ariq	sa:raqa	m <mark>a</mark> sruq
w/S/I	w <mark>a</mark> Sala 'arrived	w <mark>a:</mark> Sil	wa:sala	m <mark>a</mark> wS <mark>u</mark> l
k/s/r	k <mark>a</mark> sara ' broke'	k <mark>a:si</mark> r	ka:sara	m <mark>a</mark> ksur
j/l/s	j <mark>alasa</mark> ' sit'	j <mark>a:li</mark> s	ja:lasa	m <mark>a</mark> jlus

Regularity

- Mapping based on the morphological template:
- This approach allows us to :
 - map every single verb in the APB to the AVN
 - Also allows us to classify verbs into groups based on their morphological patterns, which allows us to:
 - Compare the argument structure of derived verbs with the argument of their base verbs. (generate frame for PB)
 - 2) Investigate the argument structure of each template. (SRL)

Distribution of Verbs on the morphological templates

- Total number of verbs extracted from APB is 1426
- Less than half was found in the AVN (47%)
- Less than half of the existed verbs in AVN was matched (46%)

6- My final Project

• Towards Building a System for Semantic Role Labeling in Arabic.

6- My final Project

back to this question:

For verbs that share the same template across the lexicon (e.g. **C**₁**aC**₂**C**₂**ala**), Do they share some syntactic and semantic generalizations?

6- My final Project

• My assumption:

Verbs generated by a certain template across the lexicon would share some semantic and syntactic behaviors.

- The aims of this project:
 - Introduce an approach for building a system for semantic role labeling in Arabic that takes into account the morphological interaction with syntax and semantics.
 - To do a pilot study on only one template(C₁aC₂C₂ala) that is already mapped so I can test my assumption if it suggests a largescale study.

Thank you شکراً جزیلاً