YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia (J. Hoffart et al, 2012)

presented by Gabe Radovsky
YAGO2: overview

- temporarily/spatially anchored knowledge base
- built automatically from Wikipedia, GeoNames, and WordNet
- contains 447 million facts about 9.8 million entities
- human evaluators judged 97.8% of facts correct
The (original) YAGO knowledge base

• introduced in 2007
• automatically constructed from Wikipedia
 – each article in Wikipedia became an entity
• about 100 manually defined relations
 – e.g. wasBornOnDate, locatedIn, hasPopulation
• used SPO (subject, predicate, object) triples to represent facts
 – reification: every fact given an identifier, e.g. wasFoundIn(fact, Wikipedia)
YAGO2: motivation

• WordNet/other lexical resources:
 – manually compiled
 – knows that ‘musician’ is a hyponym of ‘human’; doesn’t know that Leonard Cohen is a musician

• Wikipedia/GeoNames
 – very large collections of (semi-)structured data
 – advances in information extraction make them easier to mine
YAGO2: motivation

• “...current state-of-the-art knowledge bases are mostly blind to the temporal dimension” (29).

• e.g. (knowing that Abraham Lincoln was born in 1809 and died in 1865) != (knowing that Abraham Lincoln was alive in 1850)
Was Abraham Lincoln alive during the Civil War?

Using closest Wolfram|Alpha interpretation: Abraham Lincoln alive

More interpretations: during the Civil War

Input interpretation: Abraham Lincoln alive?

Result:
No

Computed by Wolfram Mathematica
Was Abraham Lincoln alive during the War of 1812?

Using closest Wolfram|Alpha interpretation: **during the War of 1812**

More interpretations: Abraham Lincoln alive

Input interpretation:

<table>
<thead>
<tr>
<th>War of 1812</th>
<th>start date</th>
<th>to</th>
<th>War of 1812</th>
<th>end date</th>
</tr>
</thead>
</table>

Result:

June 18, 1812 to December 24, 1814

Computed by Wolfram Mathematica
YAGO2: contribution

• top-down ontology “with the goal of integrating entity-relationship-oriented facts with the spatial and temporal dimensions” (29).

• new representation model: SPOTL tuples
 – (SPO [subject, predicate, object] + time + location)

• frameworks for extracting knowledge from structured or unstructured text
Extraction architecture for YAGO2

• factual rules
 – “declarative translations of all the manually defined exceptions and facts that the previous YAGO code contained” (30)

• implication rules
 – e.g. if relation b is a sub-property of relation a, all instances of b are also instances of a

• replacement rules
 – |“\{{USA\}\}” replace “[[United States]]”
 – eliminate Wikipedia administrative categories, e.g. “Articles to be cleaned up”
Giving YAGO a temporal dimension

- YYYYY-MM-DD format for dates
 - YYYYY-##-## if only year is known
- entities
 - given a time span
- facts
 - time point for instantaneous events, time span for events with extended duration
- not all entities/facts could be temporally annotated
Entities and time

• people
 – wasBornOnDate, diedOnDate
• groups, artifacts
 – wasCreatedOnDate, wasDestroyedOnDate
 – some have unbounded end points, e.g. pieces of music, scientific theories
• events
 – startedOnDate, endedOnDate, happenedOnDate (for punctual events)
• entities w/o defined start or end point
 – e.g. numbers, mythological figures, virus strains
 – not assigned temporal information
Facts and time

• facts with an extracted time
 – ElvisPresley diedOnDate 1977-08-16
• facts with a deduced time
 – ([ElvisPresley diedIn Memphis] 1977-08-16)
• extraction time of facts is also included
 – e.g. extractedFrom Wikipedia on YYYY-MM-DD
Giving YAGO a spatial dimension

• YAGO2 “concerned with entities that have a permanent spatial extent on Earth” (34)
 – e.g. countries, cities, mountains, rivers
 – original YAGO, WordNet have no geographical super-class

• new class: yagoGeoEntity
 – type yagoGeoCoordinates stores latitude/longitude pair

• only coordinates, no polygons
 – city center, not exhaustive boundaries
Harvesting geo-entities

• harvested from Wikipedia and GeoNames
• assigned only one class
 – Berlin = “capital of a political entity”
• hierarchical
 – Berlin is located in Germany is located in Europe
Assigning a location

• given to both entities and facts when “ontologically reasonable” (36)
• locations are themselves geo-entities
Entities and location

• events
 – if specific location, e.g. battles and sports competitions
 – happenedIn relation

• groups
 – company headquarters, university campus
 – isLocatedIn relation

• artifacts
 – Mona Lisa in the Louvre
 – isLocatedIn relation
(Con-)textual data in YAGO2

- non-ontological information from Wikipedia (take strings as arguments)
 - hasWikipediaAnchorText (visible text in hyperlink)
 - hasWikipediaCategory
 - hasCitationTitle (from references list)

- multilingual information
 - extracted from inter-language links in articles
 - e.g. [BattleAtWaterloo isCalled SchlachtBeiWaterloo]
 with associated fact [inLanguage German]
YAGO2: evaluation

• formed one pool for each relation
 – e.g. wasBornOnDate, hasGDP
 – randomly selected test data from each pool

• used 26 human judges
 – judge presented with fact, along with original Wikipedia article to assess its accuracy
 • accuracy of Wikipedia not assessed
 – continued evaluating each pool until confidence interval was smaller than ±5%, to assure statistical significance

• 97.8% of facts were judged correct
YAGO2: evaluation

<table>
<thead>
<tr>
<th>Relation</th>
<th>#Total facts</th>
<th>#Evaluated</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>created</td>
<td>225,563</td>
<td>94</td>
<td>98.04% ± 1.96%</td>
</tr>
<tr>
<td>diedIn</td>
<td>28,834</td>
<td>88</td>
<td>97.91% ± 2.09%</td>
</tr>
<tr>
<td>happenedOnDate</td>
<td>27,563</td>
<td>94</td>
<td>97.86% ± 2.14%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hasHeight</td>
<td>26,477</td>
<td>120</td>
<td>91.99% ± 4.59%</td>
</tr>
<tr>
<td>hasBudget</td>
<td>547</td>
<td>95</td>
<td>90.97% ± 5.41%</td>
</tr>
<tr>
<td>hasGDP</td>
<td>175</td>
<td>93</td>
<td>90.79% ± 5.52%</td>
</tr>
</tbody>
</table>

p. 42
Task-based evaluation: Jeopardy

In June 1876 George Custer made his last stand at the Battle of this river.

\(?x\) is a battle overlaps 1876-06 matches (+George +Custer).
\(?x\) happenIn ?r.
\(?r\) is a river

It returns the correct result Battle of the Little Bighorn.
Task-based evaluation: Jeopardy

Q: Disneyland opens & the peace symbol is created
A: 1950s

\text{PeaceSymbol wasCreatedOnDate ?x. Disneyland wasCreatedOnDate ?y}

Result: Correct.

Q: The Empire State Building opens & the "War of the Worlds" radio broadcast causes a panic
A: 1930s

\text{EmpireStateBuilding wasCreatedOnDate ?x}

Result: Correct.

Q: Klaus Barbie is sentenced to life in prison & DNA is first used to convict a criminal
A: 1980s

\text{NA}

Result: Not expressible.

Q: The first flight takes place at Kitty Hawk & baseball’s first World Series is played
A: 1900s

\text{BaseballWorldSeries wasCreatedOnDate ?x}

Result: Correct.

Q: The first modern crossword puzzle is published & Oreo cookies are introduced
A: 1910s

\text{Oreo wasCreatedOnDate ?x}

Result: Could not be answered, as Oreo is not in YAGO2.
Task-based evaluation: Jeopardy

Q: This famed aviator outlived his brother by 35 years, passing away in 1948 on the same day Gandhi was assassinated
A: Orville Wright

Gandhi diedOnDate ?d.
?p diedOnDate ?d.
?p type aviator

Result: Nearly correct; the YAGO2 result is WrightBrothers instead of Orville Wright.
Our project

• were originally planning to attempt hierarchical ontology based on Wikipedia
• new project: hierarchical classification of social science journal articles
• mine text of articles with Python NLTK
 – plain text ngrams for n=(1-5)
 – stemmed/POS tagged unigrams
 – possibly named entities
• run different clustering algorithms on entities (article titles with features mined from text)
• attempt to automatically generate reasonable names for clusters