Word Sense Disambiguation: Sense Tagging using Machine Learning

LING 7800/ CSCI 7000

September 25, 2014
Outline

• Supervised Machine Learning
• Probabilities
• Statistical Parsing
• Word Sense Disambiguation
What is Machine Learning?
What is Machine Learning?

• AKA
 – Pattern Recognition
 – Data Mining

• An application of statistics
What is Machine Learning?

• Programming computers to do tasks that are (often) easy for humans to do, but hard to describe algorithmically.
• Learning from observation
• Creating models that can predict outcomes for unseen data
• Analyzing large amounts of data to discover new patterns
Problems / Application Areas

- Optical Character Recognition
- Face Recognition
- Movie Recommendation
- Speech and Natural Language Processing
Ok, so where do we start?

- **Observations**
 - Data! The more the merrier (usually)

- **Representations**
 - Often raw data is unusable, especially in natural language processing
 - Need a way to represent observations in terms of its properties (features)

- **Feature Vector**

 \[
 \begin{array}{cccccccc}
 f_0 & f_1 & \ldots & \ldots & \ldots & \ldots & \ldots & f_n \\
 \end{array}
 \]
Feedback to the Learner

• **Supervised learning:** Learner told immediately whether response behavior was appropriate (training set)

• **Unsupervised learning:** No classifications are given; the learner has to discover regularities and categories in the data for itself.

• **Reinforcement learning:** Feedback occurs after a sequence of actions
Supervised Learning

• Given a set of instances, each with a set of features, and their class labels, deduce a function that maps from feature values to labels:

Given:

\[
\begin{align*}
\{x_{11}, x_{12}, x_{13} \ldots x_{1m}\} & \quad & Y_1 \\
\{x_{21}, x_{22}, x_{23} \ldots x_{2m}\} & \quad & Y_2 \\
& \ldots & \ldots \\
\{x_{n1}, x_{n2}, x_{n3} \ldots x_{nm}\} & \quad & Y_n
\end{align*}
\]

Find:

\[f(\mathbf{x}) = \hat{y}\]

\(f(\mathbf{x})\) is called a classifier.
The way and/or parameters of \(f(\mathbf{x})\) is chosen is called a classification model.
Supervised Learning

• Stages
 – Train model on data
 – Tune parameters of the model
 – Select best model
 – Evaluate
Measuring Success

• Training set, test set
• The measure of success is not how well the agent performs on the training examples, but how well it performs for new examples.
Evaluation

- Overfitting
Calculating Probabilities

• When there’s a fire, there’s a 99% chance that the alarm will go off.

• On any given day, the chance of a fire starting in your house is 1 in 1000.

• What’s the chance of there being a fire and your alarm going off tomorrow?
Axioms of Probability

• All probabilities are between 0 and 1
• \(P(True) = 1, P(False) = 0\)
 – \(P(cavity=true) = .05, P(cavity=false) = .95\)

• \(P(A \lor B) = P(A) + P(B) - P(A \land B)\)

\[\text{derive}\quad P(\neg A) = 1 - P(A)\]
Random Variables

• A term whose value isn’t necessarily known
 - Discrete r.v – values from a finite set
 • [to, with, from, by, of, for, on, at, ...]
 - Boolean r.v. – values from \{true, false\}
 - Continuous r.v. – numerical values
Probability Calculations

- **What do these notations mean?**

 - **A**: Boolean Random Variable
 - **$P(A)$**: Unconditional Probability. The notation $P(A)$ is a shortcut for $P(A=true)$. shortcut for $P(A=false)$.
 - **$P(A \lor B)$**: Probability of A or B: $P(A) + P(B) - P(A \land B)$
 - **$P(A \land B)$**: Joint Probability. Probability of A and B together.
 - **$P(A | B)$**: Probability of A given that we know B is true.
 - **H**: Non-Boolean Random Variable
 - **$P(H = h)$**: Probability H has some value
Product Rule

\[P(A \land B) = P(A|B) \times P(B) \]

\[P(A|B) = \frac{P(A \land B)}{P(B)} \]

If we can find two of these values somewhere (in a chart, from a word problem), then we can calculate the third one.
Using the Product Rule

• When there’s a fire, there’s a 99% chance that the alarm will go off.
 \[P(A \mid F) \]

• On any given day, the chance of a fire starting in your house is 1 in 1000.
 \[P(F) \]

• What’s the chance of there being a fire and your alarm going off tomorrow?
 \[P(A \land F) = P(A \mid F) \times P(F) \]
 \[.99 \times .001 = .00099 \]
Conditioning

• Sometimes we call the 2^{nd} form of the product rule the “conditioning rule” because we can use it to calculate a conditional probability from a joint probability and an unconditional one.

$$P(A | B) = \frac{P(A \land B)}{P(B)}$$
Word Problem

- Out of the 1 million words in some corpus, we know that 9100 of those words are “to” being used as a PREPOSITION.
 \[P(\text{PREP} \land \text{"to"}) \]

- Further, we know that 2.53% of all the words that appear in the whole corpus are the word “to”.
 \[P(\text{"to"}) \]

- If we are told that some particular word in a sentence is “to” but we need to guess what part of speech it is, what is the probability the word is a PREPOSITION?
 What is \[P(\text{PREP} \mid \text{"to"}) \]?
 Just calculate: \[P(\text{PREP}|\text{"to"}) = \frac{P(\text{PREP}\land\text{"to"})}{P(\text{"to"})} \]
Calculations

- \(\frac{9100}{1,000,000} = .0091 = P(\text{PREP} \land \text{“to”}) \)
- \(.0253 = P(\text{“to”}) \)
- \(\frac{.0091}{.0253} = .36 = P(\text{PREP} \land \text{“to”}) / P(\text{“to”}) \)

- OR \(1 \text{M} \times 2.53\% = 25,300 \)

- \(\frac{9100}{25,300} = 36\% \)
Statistical Parsing

- Probabilistic Context Free Grammars
- Finding probable parses
- Lexicalizing probabilities
Simple Context Free Grammar in BNF

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
NP → Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → Verb NP NP
VP → VP PP
PP → Prep NP
Simple Context Free Grammar in BNF

S → NP VP [.80]
S → Aux NP VP [.15]
S → VP [.05]
NP → Pronoun [.35]
NP → Proper-Noun [.30]
NP → Det Nominal [.20]
NP → Nominal [.15]
Nominal → Noun [.75]
Nominal → Nominal Noun [.20]
Nominal → Nominal PP [.05]
VP → Verb [.35]
VP → Verb NP [.20]
VP → Verb NP PP [.10]
VP → Verb PP [.15]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Prep NP [1.0]
Computing Probabilities

S \rightarrow NP \ VP \
LHS \rightarrow RHS \

P(T,S) = \prod P(RHS_i|LHS_i)
Simple Context Free Grammar in BNF

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
NP → Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → Verb NP NP
VP → VP PP
PP → Prep NP

Stop!
Computing Probabilities

S \rightarrow NP, VP $[.80]$
S \rightarrow VP $[.05]$
VP \rightarrow Verb $[.35]$
Verb \rightarrow stop $[.02]$
LHS \rightarrow RHS

Stop!

$$P(T, S) = \prod_{i=1}^{n} P(RHS_i \mid LHS_i)$$

$$P(T, S) = .05 \times .35 \times .02 = .00035$$
Computing Probabilities

\[P(T_{left}) = .05 \times .20 \times .20 \times .20 \times .75 \times .30 \times .60 \times .10 \times .40 = 2.2 \times 10^{-6} \]

\[P(T_{right}) = .05 \times .10 \times .20 \times .15 \times .75 \times .75 \times .30 \times .60 \times .10 \times .40 = 6.1 \times 10^{-7} \]
Subcategorization Frequencies

• The women kept the dogs on the beach.
 – Where keep? Keep on beach 95%
 • NP XP 81%
 – Which dogs? Dogs on beach 5%
 • NP 19%

• The women discussed the dogs on the beach.
 – Where discuss? Discuss on beach 10%
 • NP PP 24%
 – Which dogs? Dogs on beach 90%
 • NP 76%

Ford, Bresnan, Kaplan 82, Jurafsky 98, Roland, Jurafsky 99
Conditioning on lexical items

S → NP VP [.80]
S → Aux NP VP [.15]
S → VP [.05]
NP → Pronoun [.35]
NP → Proper-Noun [.30]
NP → Det Nominal [.20]
NP → Nominal [.15]
Nominal → Noun [.75]
Nominal → Nominal Noun [.20]
Nominal → Nominal PP [.05]
VP → Verb [.87] \{sleep, cry, laugh\}
VP → Verb NP [.03]
VP → Verb NP PP [.00]
VP → Verb PP [.05]
VP → Verb NP NP [.00]
VP → VP PP [.05]
PP → Prep NP [1.0]
Lexicalizing Probabilities

\[
\begin{align*}
S & \rightarrow NP \ VP \quad [.80] \\
S & \rightarrow Aux \ NP \ VP \quad [.15] \\
S & \rightarrow VP \quad [.05] \\
NP & \rightarrow Pronoun \quad [.35] \\
NP & \rightarrow Proper-Noun \quad [.30] \\
NP & \rightarrow Det \ Nominal \quad [.20] \\
NP & \rightarrow Nominal \quad [.15] \\
Nominal & \rightarrow Noun \quad [.75] \\
Nominal & \rightarrow Nominal \ Noun \quad [.20] \\
Nominal & \rightarrow Nominal \ PP \quad [.05] \\
VP & \rightarrow Verb \quad [.30] \\
VP & \rightarrow Verb \ NP \quad [0.55] \ \{break, split, crack..\} \\
VP & \rightarrow Verb \ NP \ PP \quad [.05] \\
VP & \rightarrow Verb \ PP \quad [.05] \\
VP & \rightarrow Verb \ NP \ NP \quad [.00] \\
VP & \rightarrow VP \ PP \quad [.05] \\
PP & \rightarrow Prep \ NP \quad [1.0]
\end{align*}
\]
Training data for Statistical Parsers

- How does the computer learn the probabilities?
- Lots and lots of parsed sentences
- 50K WSJ sentences
Outline

• Supervised Machine Learning
• Probabilities
• Statistical Parsing
• Word Sense Disambiguation
Naïve Bayes

• Assumes that when class label is known the features are independent:

\[
f(x) = \arg \max_y p(y) \prod_{i=1}^{m} p(x_i \mid y)
\]

\[
P(T, S) = \prod_{i=1}^{n} P(RHS_i \mid LHS_i)
\]
Naïve Bayes Dog vs Cat Classifier

- 2 features: weight & how frequently it chases a mouse

<table>
<thead>
<tr>
<th>mouse chase</th>
<th>weight</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>55</td>
<td>dog</td>
</tr>
<tr>
<td>0.05</td>
<td>15</td>
<td>dog</td>
</tr>
<tr>
<td>0.2</td>
<td>100</td>
<td>dog</td>
</tr>
<tr>
<td>0.25</td>
<td>42</td>
<td>dog</td>
</tr>
<tr>
<td>0.2</td>
<td>32</td>
<td>dog</td>
</tr>
<tr>
<td>0.6</td>
<td>25</td>
<td>cat</td>
</tr>
<tr>
<td>0.2</td>
<td>15</td>
<td>cat</td>
</tr>
<tr>
<td>0.55</td>
<td>8</td>
<td>cat</td>
</tr>
<tr>
<td>0.15</td>
<td>12</td>
<td>cat</td>
</tr>
<tr>
<td>0.4</td>
<td>15</td>
<td>cat</td>
</tr>
</tbody>
</table>

Given an animal that weighs no more than 20 lbs and chases a mouse at least 21% of time, is it a cat or dog?

\[
f(\text{dog}, w \leq 20, m \geq .21) = \]
\[
p(\text{dog}) p(w \leq 20 \mid \text{dog}) p(m \geq 0.21 \mid \text{dog}) = 0.5 \times 0.2 \times 0.4 = 0.04
\]

\[
f(\text{cat}, w \leq 20, m \geq .21) = \]
\[
p(\text{cat}) p(w \leq 20 \mid \text{cat}) p(m \geq 0.21 \mid \text{cat}) = 0.5 \times 0.8 \times 0.6 = 0.24
\]

So, it’s a cat! In fact, naïve Bayes is 83.3% certain it’s a cat over a dog.
Word Sense Disambiguation

• Given an occurrence of a word, decide which sense, or meaning, was intended.

• Example, *run*

 – *run1*: move swiftly (*I ran to the store.*)

 – *run2*: operate (*I run a store.*)

 – *run3*: flow (*A river runs through the farm.*)

 – *run4*: length of torn stitches (*Her stockings had a run.*)
Word Sense Disambiguation

• Categories
 – Use word sense labels (*run1*, *run2*, etc.)

• Features – describe context of word
 – \(\text{near}(w)\) : is the given word near word \(w\)?
 – \(\text{pos}\) : word’s part of speech
 – \(\text{left}(w)\) : is word immediately preceded by \(w\)?
 – etc.
Word Sense Disambiguation

• Categories
 – Use word sense labels (run1, run2, etc.)

• Features – describe context of word
 – $near(w)$: is the given word near word [race, river, stocking]?
 – pos: word’s part of speech [noun or verb]
 – $left(w)$: is word immediately preceded by w?
 – etc.
WSD: Sample Training Data Features

<table>
<thead>
<tr>
<th>POS</th>
<th>near(race)</th>
<th>near(river)</th>
<th>near(stockings)</th>
<th>Sense#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>run1</td>
</tr>
<tr>
<td>Verb</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>run2</td>
</tr>
<tr>
<td>Verb</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>run3</td>
</tr>
<tr>
<td>Noun</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>run4</td>
</tr>
</tbody>
</table>

run1: move swiftly (*I ran to the store.*)
run2: operate (*I run a store.*)
run3: flow (*A river runs through the farm.*)
run4: length of torn stitches (*Her stockings had a run.*)
Word Sense Disambiguation

• Given an occurrence of a word, decide which sense, or meaning, was intended.

• Example, *run*

 – *run1*: move swiftly (*I ran to the store. John ran in the race by the river. She’s running in heels and stockings!*)

 – *run2*: operate (*I run a store. He runs a river rafting guide service that has an annual race*)

 – *run3*: flow (*A river runs through the farm.*)

 – *run4*: length of torn stitches (*Her stockings had a run. Her sweater had a run.*)
WSD: More instances

<table>
<thead>
<tr>
<th>POS</th>
<th>near(race)</th>
<th>near(river)</th>
<th>near(stockings)</th>
<th>Sense#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>run4</td>
</tr>
<tr>
<td>Verb</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>run1</td>
</tr>
<tr>
<td>Verb</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>run3</td>
</tr>
<tr>
<td>Noun</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>run4</td>
</tr>
<tr>
<td>Verb</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>run1</td>
</tr>
<tr>
<td>Verb</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>run2</td>
</tr>
<tr>
<td>Verb</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>run2</td>
</tr>
<tr>
<td>Noun</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>run4</td>
</tr>
</tbody>
</table>

Maybe more kinds of features would help?
We serve men.

We serve food to men.
We serve our community.

serve —IndirectObject→ men

We serve organic food.
We serve coffee to connoisseurs.

serve —DirectObject→ men
More Features for WSD

Dang & Palmer, SIGLEX-02

- Maximum entropy framework, \(p(\text{sense}|\text{context}) \)
- Contextual Linguistic Features
 - Topical feature for \(W \), keywords
 - (determined automatically)
 - Local *syntactic* features for \(W \):
 - presence of subject, complements, passive?
 - words in subject, complement positions, particles, preps,..
 - Local *semantic* features for \(W \):
 - Semantic class info from WordNet (synsets, etc.)
 - Named Entity tag (PERSON, LOCATION,..) for proper Ns
 - Words within +/- 2 word window
Contribution of features to result

Dang & Palmer, SIGLEX-02

- Maximum entropy framework, \(p(\text{sense}|\text{context}) \)
- Contextual Linguistic Features
 - Topical feature for \(W \), keywords: +2.5%,
 - (determined automatically)
 - Local syntactic features for \(W \): +1.5 to +5%,
 - presence of subject, complements, passive?
 - words in subject, complement positions, particles, preps,..
 - Local semantic features for \(W \): +6%
 - Semantic class info from WordNet (synsets, etc.)
 - Named Entity tag (PERSON, LOCATION,..) for proper Ns
 - Words within +/- 2 word window
Evaluation

- Overfitting
WordNet: - call, 28 senses, Senseval2 groups (engineering!)

- Loud cry: WN3, WN19, WN1, WN22
- Label: WN18, WN27
- Challenge: WN2, WN13
- Phone/radio: WN28
- WN17, WN11

- Bird or animal cry: WN4, WN7, WN8, WN9
- Request: WN20, WN25
- Call a loan/bond: WN6, WN23
- Visit: WN10, WN14, WN21, WN24
- Bid
Grouping improved scores:
ITA 82%, MaxEnt WSD 69%

Palmer, Dang, Fellbaum, NLE07

- **call**: 31% of errors due to confusion between senses within same group 1:
 - name, call -- (assign a specified, proper name to; *They named their son David*)
 - call -- (ascribe a quality to or give a name of a common noun that reflects a quality; *He called me a bastard*)
 - call -- (consider or regard as being; *I would not call her beautiful*)
 - 75% with training and testing on grouped senses vs.
 - 43% with training and testing on fine-grained senses
Automatic sense tagging

• Where does the sense tagger get the information it needs to apply all these criteria?