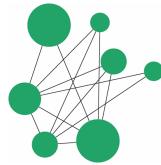
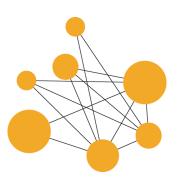

Verbs in Biomedical Text


Karin Verspoor

Faculty, Computational Bioscience Program University of Colorado School of Medicine

Kevin Bretonnel Cohen

Biomedical Text Mining Group Lead University of Colorado School of Medicine

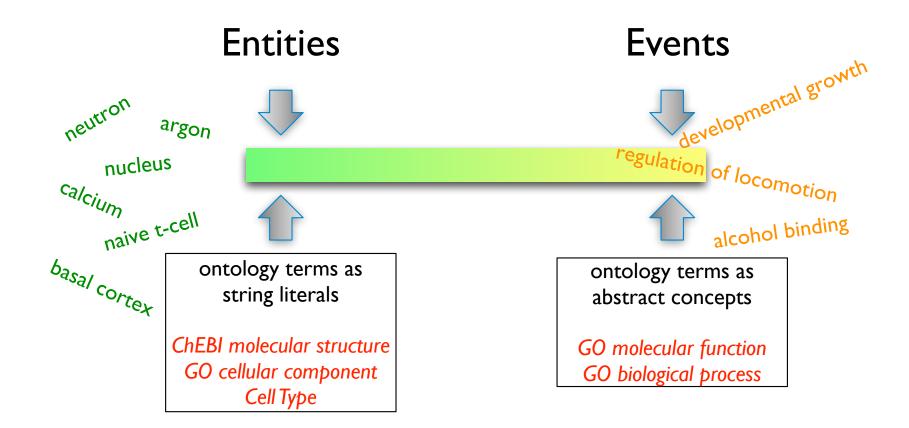


Karin.Verspoor@ucdenver.edu http://compbio.ucdenver.edu/Hunter_lab/Verspoor

Kevin.Cohen@gmail.com http://compbio.ucdenver.edu/Hunter_lab/Cohen

THE CONTEXT for biomedical natural language processing

Exponential knowledge growth in biomedicine


- I,330 peer-reviewed gene-related databases in 2011 NAR db issue
- Over 20 million PubMed entries (> 2,200/day)
- Breakdown of disciplinary boundaries makes more of it relevant to each of us
- "Like drinking from a firehose" Jim Ostell

Language processing of Biomedical texts

 Tools that support identification, indexing, and extraction of biological concepts

Scientific Publishing & Semantics

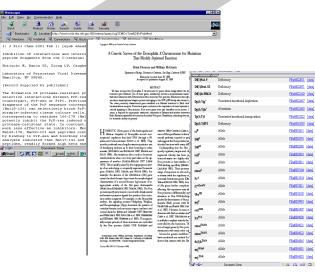
- Content enrichment
- Direct access to (relevant) external data
- Structured digital abstracts
- Enables
 - -Interactivity
 - -targeted searches
 - -relevance linking
 - -formalizing content; actionable data

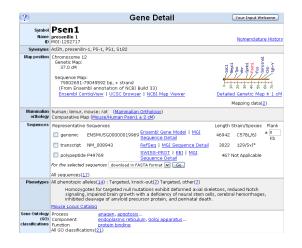
Making BioNLP relevant

Recognition of OBO terms, relations

CRAFT corpus (first release very soon)

The significance of the interaction between DAZAP1 and DAZL/DAZ remains to be defined. These proteins may act together to facilitate the expression of a set of genes in germ cells. For example, DAZAP1 could be involved in the transport of the mRNAs of the target genes of DAZL. Alternatively, DAZL and DAZAP1 may act antagonistically to regulate the timing and the level of expression. Such an antagonistic interaction between two interacting RNA-binding proteins is exemplified by the <mark>neuron</mark>-specific <mark>nuclear</mark> RNA-binding protein, Nova-1. Nova-1 regulates the alternative splicing of the pre-mRNAs encoding neuronal inhibitory glycine receptor α2 (GlyR α2) [23]. The ability of Nova-1 to activate exon selection in neurons is antagonized by a second RNA-binding protein, brPTB (brain-enriched polypyrimidine tractbinding protein), which interacts with Nova-1 and inhibits its function [24]. DAZAP1 could function in a similar manner by binding to DAZL and inhibiting its function. Comparing the phenotypes of Dazl1 and Dazap1 single and double knock-out mice may provide some clues to the significance of their interaction. Dazl1 knock-out mice have already been generated and studied [6]. The spermatogenic defect in the male becomes apparent only after day 7 post partum when the germ cells are committing to meiosis (H. Cooke, personal communication). The genomic structure of Dazap1, delineated here, should facilitate the generating of Dazap1 null mutation.


Model Organism Curation Pipeline


3. Curate genes from paper

2. List genes for curation

1. Select papers

MEDLINE

From Hirschman et al. BMC Bioinformatics 2005 6 (Suppl 1):S1

THE LINGUISTIC CHALLENGES of BioNLP

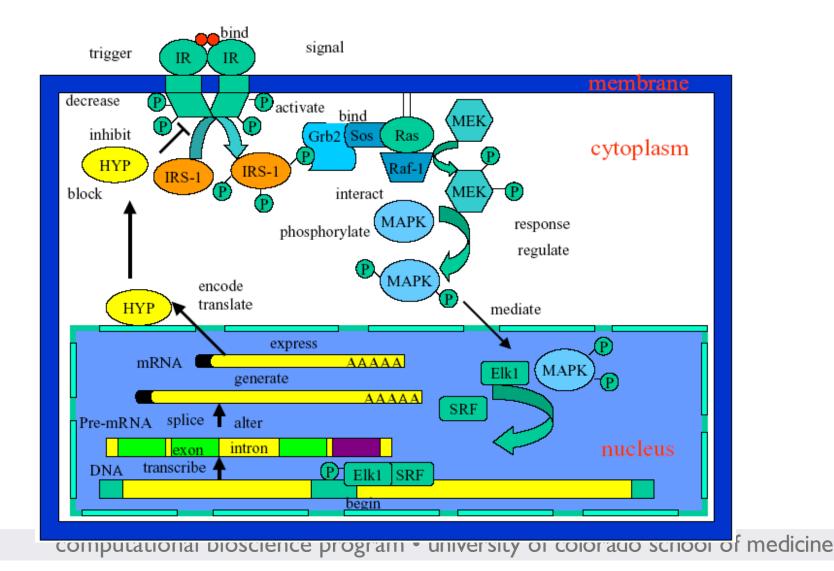
Biomedical	BNC
show	do
suggest	say
use	make
indicate	go
contain	see
describe	take
express	get
bind	know
require	come
observe	give
find	think
determine	use
demonstrate	find
perform	look
induce	want

Verbs in Biomedical Text

- Verb usage differs significantly from general English
- Domain-specific verbs: phosphorylate, ubiquitinate
- Verbs that have a domainspecific sense: express, regulate, signal, transcribe

K. Bretonnel Cohen and Lawrence Hunter (2006). A critical review of PASBio's argument structures for biomedical verbs. *BMC Bioinformatics* 7(Suppl. 3):S5.

Most research on biomedical semantics


All relationships binary Protein/protein Drug/gene Drug/disease Drug/effect

PASBio (Predicate-

Argument Structures for Biology) Project

- Described in Wattarujeekrit, Shah, and Collier (2004)
- Set of 29 verbs, 34 predicates with associated argument structures
- 10 annotated examples each
- Publicly available

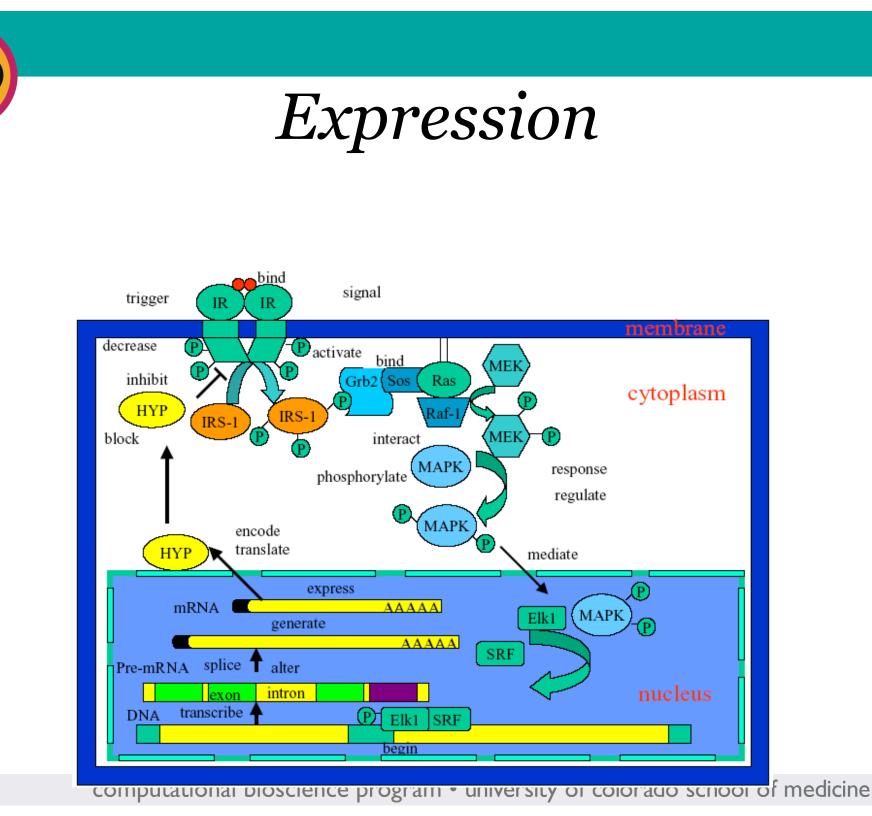
Predicate selection for PASBio:gene expression; regulation; signalling

PASBio findings

Overlap between domain-specific and "General English" semantics is low Biological domain has more "core arguments," fewer "adjuncts"

PASBio findings

- 9/29 didn't occur in PropBank or had different sense
- 45% (9/20) had more arguments
 25% (5/20) had fewer arguments
 30% (6/20) had same number



Native speaker intuition behind this

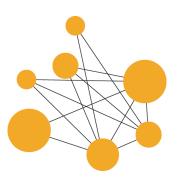
- I don't believe what you tell me unless I know when, where, at what pH, at what temperature...
- **Consequence: weak distinction between co**re arguments and adjuncts

Example representation: *express*

- Arg1: named entity being expressed (gene or gene product)
- Arg2: property of the existing name entity
- Arg3: location refering to organelle, cell or tissue

Are these arguments to a predicate...

Example Arg2s: two mRNA isoforms of 2.4 and 4.0 kb 2.0 and 2.4 kilobases in length


Two equally abundant mRNAs for il8ra, 2.0 and 2.4 kilobases in length, are expressed in neutrophils and arise from usage of two alternative polyadenylation signals.

...or slots in a frame?

PUNDIT:

Customer Symptoms Actions taken Success or failure

Note: frame slots inferred from Palmer et al. (1986)

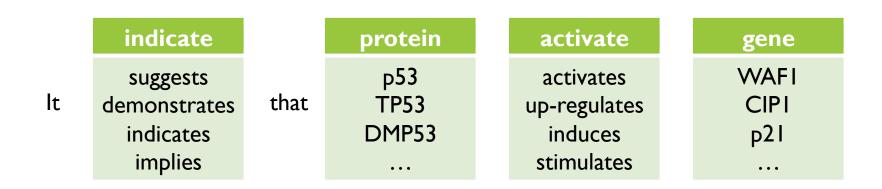
Subcategorization frames

- Help to derive the correct interpretation
- e.g. resolve attachment ambiguities:

assessing ubiquitin <u>expression in infected mice brains</u>

two poly(A)+ RNAs transcribed from <u>the opposite</u> <u>strand of the upstream flanking regions lacked</u> ...

Subcategorization frame learning


- Goal: acquire subcategorization frames from a corpus
- utilize dependency relations derived from a statistical parser
- map from sets of dependency relations to a SCF via manually developed (unification) rules
- rules defined for COMLEX, ANLT, NOMLEX frames

Preiss, Briscoe, Korhonen. "A System for Large-Scale Acquisition of Verbal, Nomical, and Adjectival, Subcategorization Frames from Corpora", ACL 2007.

Biomedical verb classification

- Induce lexical classes from corpora
 - -Build an inventory of subcategorization frames for each verb
 - -Cluster verbs according to shared subcat frames

Korhonen, Krymolowski, Collier. "Automatic Classification of Verbs in Biomedical Texts", ACL 2006, p. 345-352.

Nominalization and Alternations in Biomedical Text

K. Bretonnel Cohen, Martha Palmer, and Lawrence Hunter (2008). Nominalization and alternations in biomedical language. *PLoS ONE* 3(9).

Goals of the study

- Characterize behavior of nominalizations in biomedical text
- Determine implications for systembuilding

Nominalization: noun derived from a verb Verbal nominalization: *activation, inhibition,*

- induction
- Argument nominalization: *activator*, *inhibitor*, *inducer*, *mutant*

Nominalizations are dominant in biomedical texts

Predicate	Nominalization	All ve	rb forms
Express	2,909	1,233	
Develop	1,408	597	
Analyze	1,565	364	
Observe	185	809	
Differentiate	737	166	
Describe	10	621	
Compare	185	668	
Lose	556	74	
Perform	86	599	
Form	533	511	Data from CRAFT corpus

Relevant points for text mining

- Nominalizations are an obvious route for scaling up recall
- Nominalizations are more difficult to handle than verbs...

...but can yield higher precision (Cohen et al. 2008)

Argument: participant in or qualifier of the action of the predicate

Argument

Arg0	Causer of increase
------	--------------------

- Arg1 Thing increasing
- Arg2 Amount increased by
- Arg3 Start point
- Arg4 End point

Our representation of this predicate is the same as PropBank's. doi:10.1371/journal.pone.0003158.t001

Argument

Arg0	Causer of increase
Arg1	Thing increasing
Arg2	Amount increased by
the second se	

Arg3 Start point

Arg4 End point

Our representation of this predicate is the s doi:10.1371/journal.pone.0003158.t001

<u>D0870, an azole antifungal agent</u>[Arg0], produced dose-related **increases** in <u>total cytochrome P450</u> <u>and aldrin epoxidase</u>[Arg1]

Argument

- Arg0 Causer of increase
- Arg1 Thing increasing
- Arg2 Amount increased by
- Arg3 Start point
- Arg4 End point

Our representation of this predicate is the s doi:10.1371/journal.pone.0003158.t001

Increase in <u>phosphorylation of APP</u>[Arg1] by <u>overexpression of the nerve growth factor receptor</u> <u>Trk A</u>[Arg0]

2 arguments: *Activate* Argo: Activator Arg1: Activatee 3 arguments: *Inhibit* Argo: Inhibitor Arg1: Inhibitee Arg2: Amount of inhibition

cb

Definitions

Alternation: variations in the surface syntactic form of predicates and their arguments

- Active/passive
 - X phosphorylates Y
 - Y is phosphorylated by X
- Transitive/intransitive
 - X decreases Y
 - Y decreases

Alternations of nominalizations: positions of arguments

- Any combination of the set of positions for each argument of a nominalization
 - —Pre-nominal: <u>phenobarbital</u> induction, <u>trkA</u> expression
 - -Post-nominal: *increases* <u>of oxygen</u>
 - -No argument present: *Induction followed a slower kinetic...*

-Noun-phrase-external: *this enzyme can undergo* **activation**

Pre-nominal arguments

Agent (Argo)

cytochrome(s) P-450 mediation

<u>interferon-gamma</u> **inhibition** of VSV replication

Phenobarbital treatment

Patient (Arg1, ≅ logical object) <u>trkA</u> expression <u>agonist</u> association cancer treatment

Noun-phrase-external arguments

- <u>EWS/FLI-1 antagonists</u> induce growth **inhibition** of Ewing tumor cells
 - Support verb links agent to noun phrase
- potency of <u>sertraline</u> for dopamine reuptake **inhibition**

Transparent noun

<u>Phenobarbital (PB)</u> has long been known as an inducer of drugmetabolizing enzymes in liver, but the molecular mechanism underlying this **induction** is still poorly understood

Event coreference

Alternations of nominalizations

activation <u>of molecular oxygen</u> <u>by</u> <u>alkaline hemin</u>

Argo post-nominal, Arg1 post-nominal

K(ATP) activation by cromakalim

Argo post-nominal, Arg1 pre-nominal <u>Mutational</u> **activation** <u>of the ras genes</u> <u>Arg0 pre-nominal</u>, Arg1 post-nominal

cb

Previous work on nominalizations in the biomedical domain

- Ono et al. (2001): *interaction, association, complex,* and *binding*
- Pustejovsky et al. (2002): *inhibition* and *inhibitor*
- Hu et al. (2005), Narayanaswamy et al. (2005), Yuan et al. (2006): *phosphorylation*
- Lots of early work by Zellig Harris, the Linguistic String Project, other workers in sublanguage model

Prediction investigated

Within scientific language, we should **ex**pect a limited variety of alternations

Previous work on nominalizations in the biomedical domain

• GENESCENE: tackles all verbal nominalizations

-Arguments recognized only if following nominalization and preceded by *of, in,* or *by*

> Leroy and Chen (2002), Leroy et al. (2003), Leroy and Chen (2005)

A sample predicate for which the three prepositions *of, in,* **and** *by* are insufficient for capturing all arguments.

Argument		Associated prepositions	
Arg0	Causer of increase	after, by, during, in, of	
Arg1	Thing increasing	in, for, of, with	
Arg2	Amount increased by	by, in, of, up, with	
Arg3	Start point	From	
Arg4	End point	to, with	

Our representation of this predicate is the same as PropBank's. doi:10.1371/journal.pone.0003158.t001

Materials and methods

Release 0.9 of the PennBioIE corpus (collection of abstracts of journal articles, annotated with parts of speech, syntactic structure, and entities)

Materials and methods

- Marked arguments for 746 tokens of nominalizations of the 10 most common verbs
- Second annotator marked 15% of these to calculate interannotator agreement (87.5%)

Text source: 4_source_file_852_35168.src	comments			
7-Ethoxyresorufin (a selective and competitive blocker of CYP 1A is histamine mediated EDHF responses but did not alter vasodilation init activation by either cromakalim or NS-1619, or through the nitric oxid nitroprusside).	tiated through K+ channel			
Filter - Empty Filter	annotated class	•		
filter selection: < 📒 📎	Activate			
span edit: 📲 🕨 🚺	slots of annotated class (2 v	alues)		
annotations 🔏 🗙	Arg0 Activator	8 ¥ * *		
K+ channel (Pre-predicate Patient) activation (Activate)	by either cromakalim or NS-1	619 (Post-predicate Agent)		
by either cromakalim or NS-1619 (Post-predicate Agent)	Arg1 Activatee	₽ ₩ ♦ ₩		
	K+ channel (Pre-predicate Pa	atient)		

Result 1: attested alternations are extraordinarily diverse

Inhibition, a 3-argument predicate— Arguments 0 and 1 only shown

	Arg0	Arg0					
		Pre	Post	Ext	Abs		
Arg1	Pre	-	2	8	4		
	Post	1	15	16	26		
	Ext	1	3	5	1		
	Abs	3	2	2	6		

Data is combined from both parts of the BiolE corpus. 24/64 possible patterns are attested in 95 tokens (5 can't-tell). doi:10.1371/journal.pone.0003158.t032

Results for 2-argument verbs

	Alternations	Tokens	х	attested/possible	type/token	
expression	6	97	4	0.375	0.062	
mediation	2	2	2	0.124	1.0	
containment	1	1	0	.063	1.0	
activation	14	91	9	0.875	0.154	

The maximum number possible is 4². Data is given for the full BiolE corpus. The column labelled *tokens* shows the number of tokens for which no argument was labelled "can't tell." The column labelled X shows the number of tokens with at least one argument labelled "can't tell." doi:10.1371/journal.pone.0003158.t014

Results for 3-argument verbs

				attested/		
	Alternations	Tokens	x	possible	type/token	
Inhibition	24	95	5	0.375	0.253	
Induction	19	92	8	0.297	0.21	
association.01	5	8	0	0.078	0.625	
association.02	10	78	1	0.156	0.128	
treatment.04	9	58	7	0.141	0.155	

The maximum number possible is 4³. Data is given for the full BioIE corpus. The column labelled *tokens* shows the number of tokens for which no argument was labelled "can't tell." The column labelled X shows the number of tokens with at least one argument labelled "can't tell." doi:10.1371/journal.pone.0003158.t015

Result 2: syntactic positions

Most common syntactic positions for each semantic role:

Semantic role	Total	Most common syntactic positions
Arg0	570	Absent (378), NP-external (82), Post-nominal (64), Pre-nominal (46)
Arg1	612	Post-nominal (341), Pre-nominal (124), Absent (79), NP-external (68)

See Tables 43 and 44 for the raw data. doi:10.1371/journal.pone.0003158.t025

Result 3: semantic roles

Most frequent semantic roles for each syntactic position:

Position	Total		
Pre-nominal	Arg1 (124)	Arg0 (51)	175
Post-nominal	Arg1 (341)	Arg0 (107)	448
NP-external	Arg0 (85)	Arg1 (68)	153
Absent	Arg0 (378)	Arg1 (79)	461

Only Args 0 and 1 are indicated. *Association.02,03* are omitted. See Tables 43 and 44 for the raw data. doi:10.1371/journal.pone.0003158.t026

Implications for systembuilding

- Distinction between absent and noun-phraseexternal arguments is crucial and difficult, and finite state approaches will not suffice; merging data from different clauses and sentences may be useful
- Pre-nominal arguments are undergoer by ratio of 2.5:1
- For predicates with agent and patient, post/post and pre/post patterns predominate, but others are common as well

What can be done?

External arguments:

semantic role labelling approach

• ...but, very important to recognize the absent/ external distinction, especially with machine learning

pattern-based approach

• ...but, approaches to external arguments (RLIMS-P) are so far very predicate-specific

What can be done?

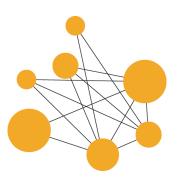
Pre-nominal arguments:

- apply heuristic that we have identified based on distributional characteristics
- for most frequent nominalizations, manual encoding may be tractable

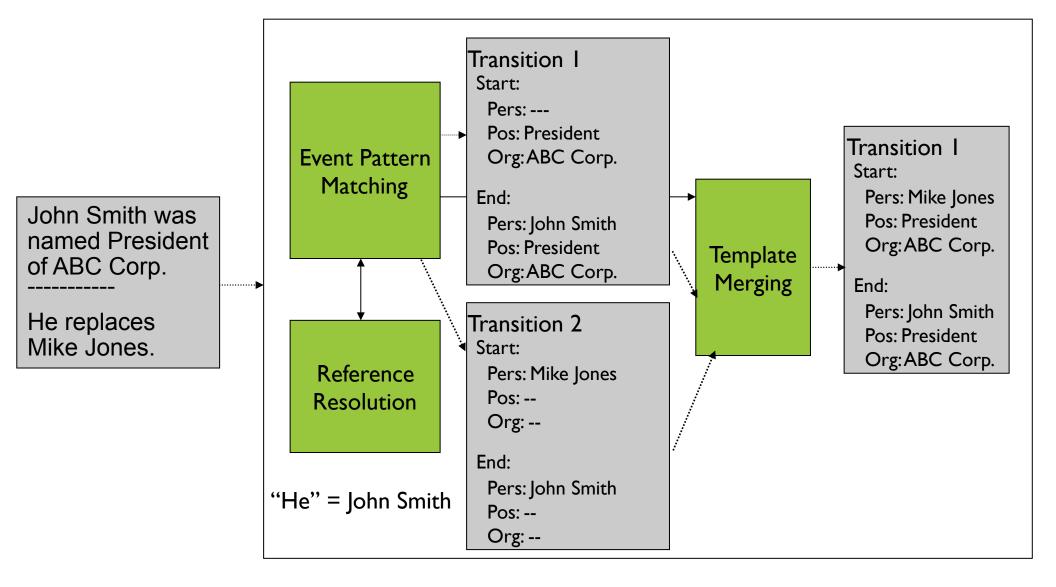
Future analysis

Can identity of pre-predicate arguments be characterized on a per-predicate basis? At minimum will require word sense disambiguation (phenobarbital treatment/ cancer treatment)

Can pre-predicate arguments be characterized by semantic class?

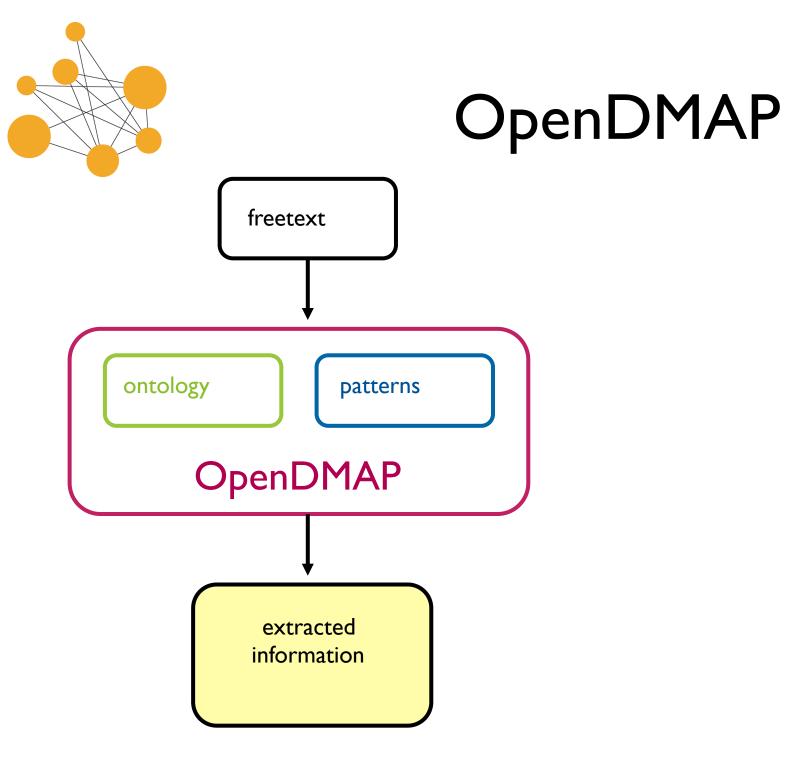


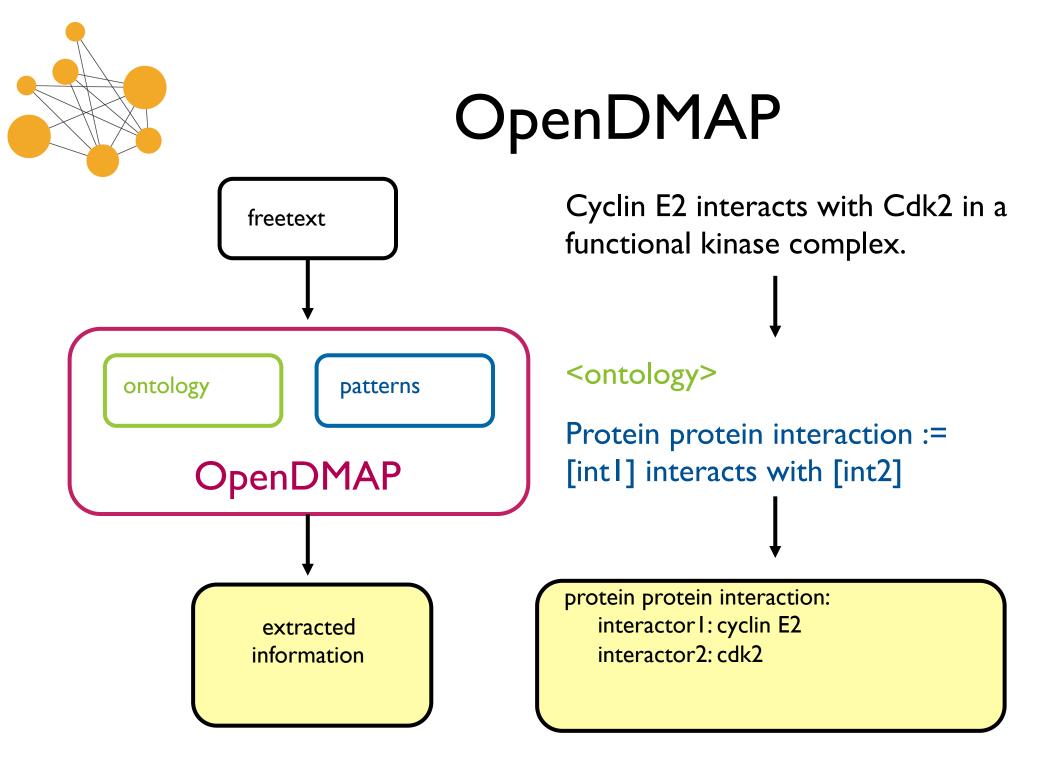
INFORMATION EXTRACTION technology for BioNLP

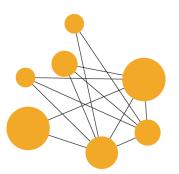


Information Extraction

- Algorithms that
 - automatically extract structured information from unstructured (natural language) text
 - -aim to identify entities and events of interest
 - -utilize natural language processing
 - (linguistic) rule-based
 - machine learning


Information Extraction (MUC example)



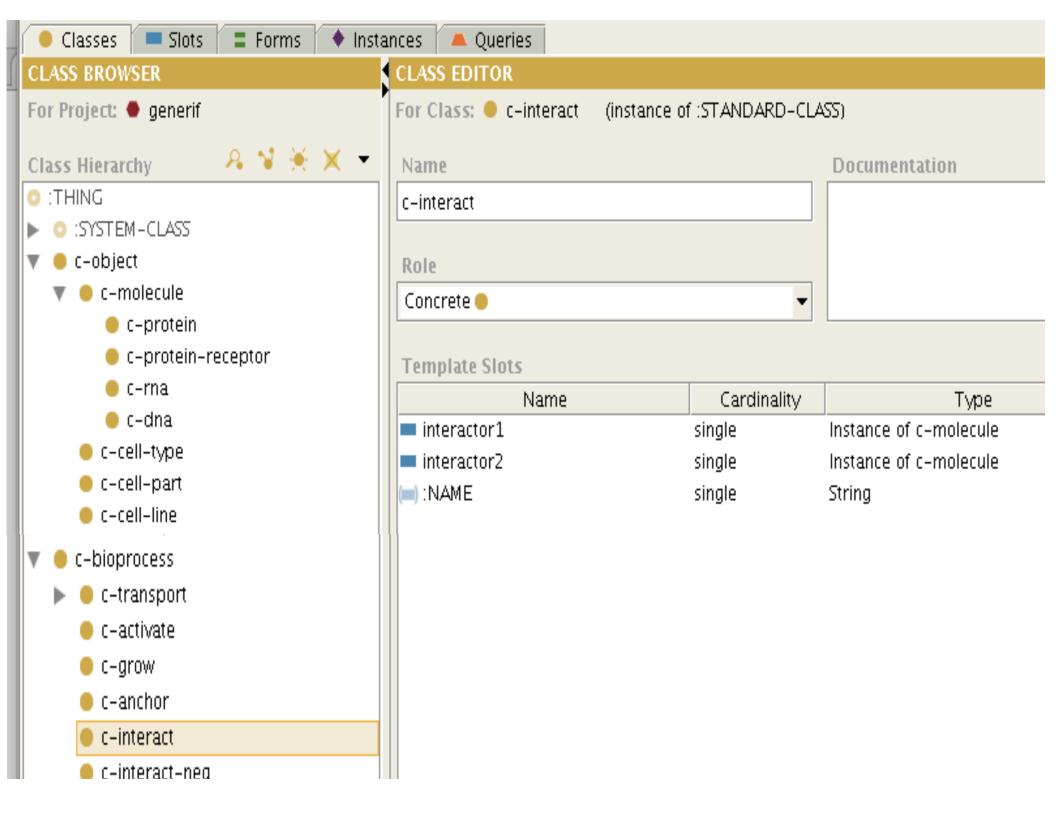


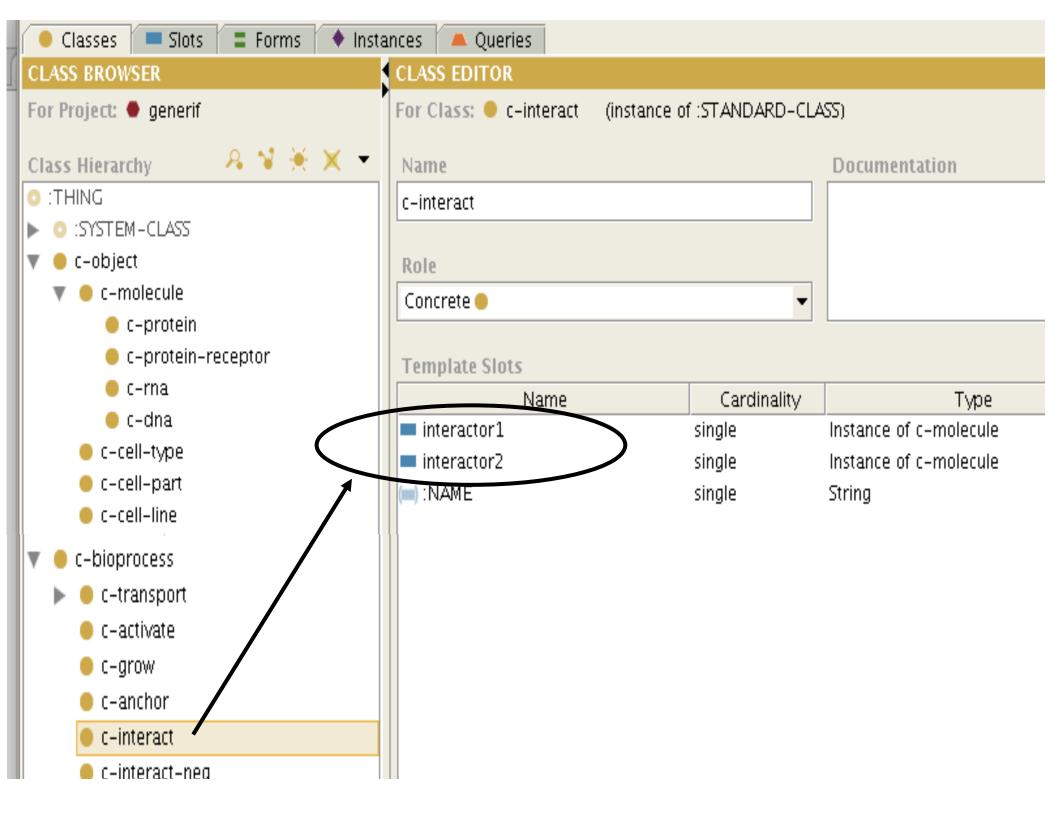
OpenDMAP extracts typed relations from the literature

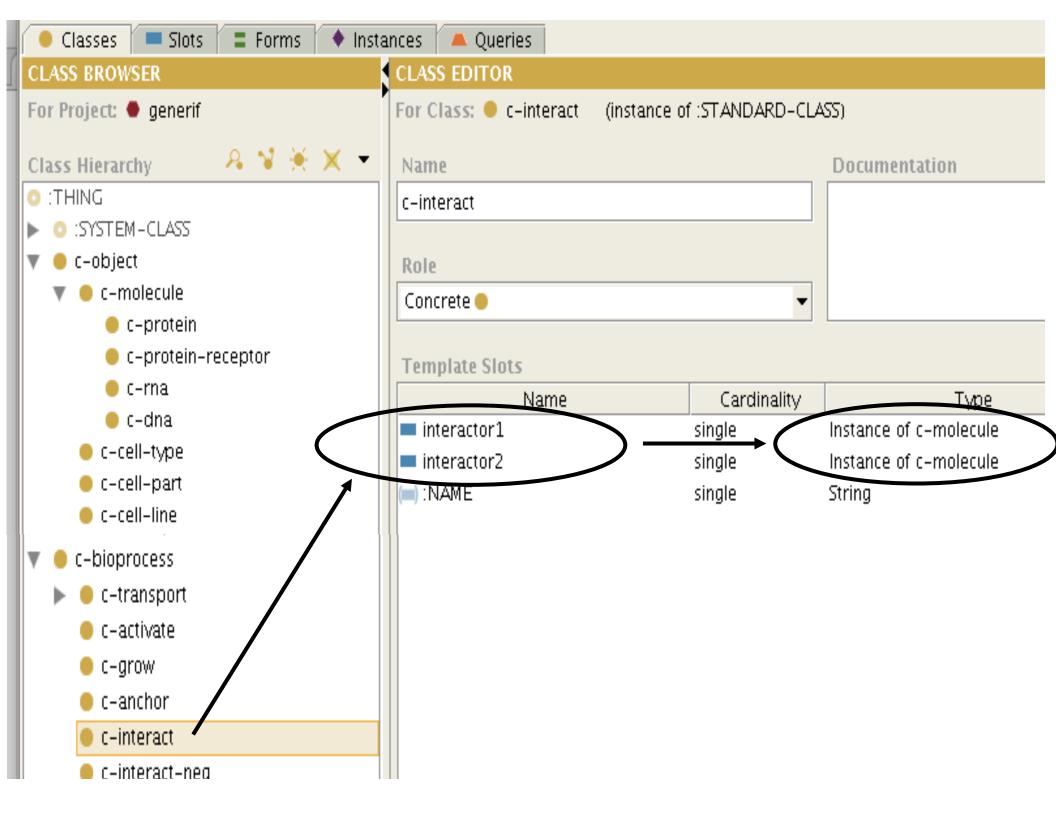
- Concept recognition tool
 - Connect ontological terms to literature instances
 - Built on Protégé knowledge representation system
- Language patterns associated with concepts and slots
 - Patterns can contain text literals, other concepts, constraints (conceptual or syntactic), ordering information, or outputs of other processing.
 - Linked to many text analysis engines via UIMA
- Best performance in BioCreative II IPS task
- >500,000 instances of three predicates (with arguments) extracted from Medline Abstracts
- [Hunter, et al., 2008] http://bionlp.sourceforge.net

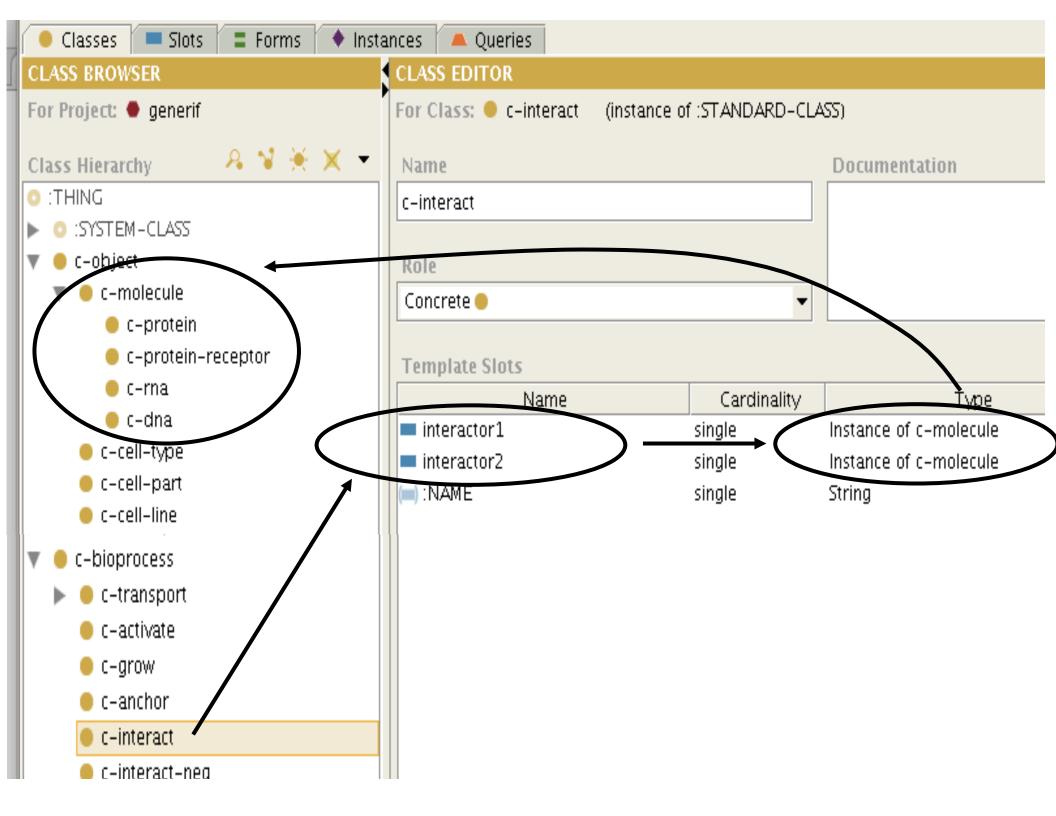
OpenDMAP

PROTÉGÉ ONTOLOGY


CLASS: protein protein interaction SLOT: interactor I TYPE: molecule SLOT: interactor2 TYPE: molecule


PATTERNS


{c-interact} := [interactor1] interacts with [interactor2]
{c-interact} := [interactor1] is bound by [interactor2]


• • •

BioCreative Example

- Some BioCreative patterns for interact
 - {c-interact} := [interactorl] {w-is} {w-interact-verbl} {w-preposition} the?
 [interactor2];

 $\{w-is\} := is, are, was, were;$

{w-interact-verbl} := co-immunoprecipitate, co-immunoprecipitates, coimmunoprecipitated, co-localize, co-localizes, co-localized;

{w-preposition} := among, between, by, of, with, to;

• Matched text:

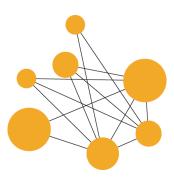
PMID 16494873, SENT_ID 16494873_114

Upon precipitation of the SOX10 protein with anti-HA antibody, Western blot detection revealed expression of UBC9-V5 (25 kDa) in the sample (Fig. 1, line 6), indicating that **{UBC9** was co-immunoprecipitated with **SOX10**}.

INTERACTOR_1: UBC9 resolved to UniprotID: UBC9_RAT INTERACTOR_2: SOX10 resolved to UniProtID: SOX10_RAT {c-interact} := [UBC9_RAT]_{interactor}, [SOX10_RAT]_{interactor} 2

BioCreative Results

- 359 full-text articles in the test set
- 385 interaction assertions produced
- Performance averaged per article (to avoid dominance of a few assertion-heavy articles)


P = 0.39, R = 0.31, F = 0.29

- Best result in the evaluation!
 - -F score 10% higher than next-scoring system
 - -F score > 3 standard deviations above mean
 - -Recall 20% higher than next-scoring system

BioCreative conclusions

- Information extraction in biomedical text is hard
 - Linguistic variability in how concepts are expressed
 - Complex concepts with multiple "slots"
- OpenDMAP advances the state of the art
 - Use of an ontology grounds the search for information
 - Flexibility of the pattern language to incorporate constraints at different levels (conceptual, lexical, word order, linguistic)

Integrating background knowledge

- Can improve OpenDMAP precision with minimal cost to recall
 - -Take advantage of background knowledge
 - -Tighten constraints on slot fillers in the ontology
 - -No change to existing patterns
- Proof of concept:
 - -Distinguish among several types of protein activation (enzyme and receptor) in GeneRIFs
 - -Utilize Gene Ontology annotations

Livingston, K., Johnson, H., Verspoor, K., Hunter, L. (submitted). "Leveraging Gene Ontology Annotations to Improve a Memory-Based Language Understanding System".

Refining selectional restrictions

enzyme activator activity

activating entity: protein

activated entity: protein - catalytic activity

receptor activator activity

activating entity: protein

activated entity: protein - receptor activity

TP: [GeneRIF 104155]

an ER stress induces the activation of [caspase-12_protein - catalytic activity]activated_entity via [caspase-3_protein]activator

prevented FP: [GeneRIF 105594]

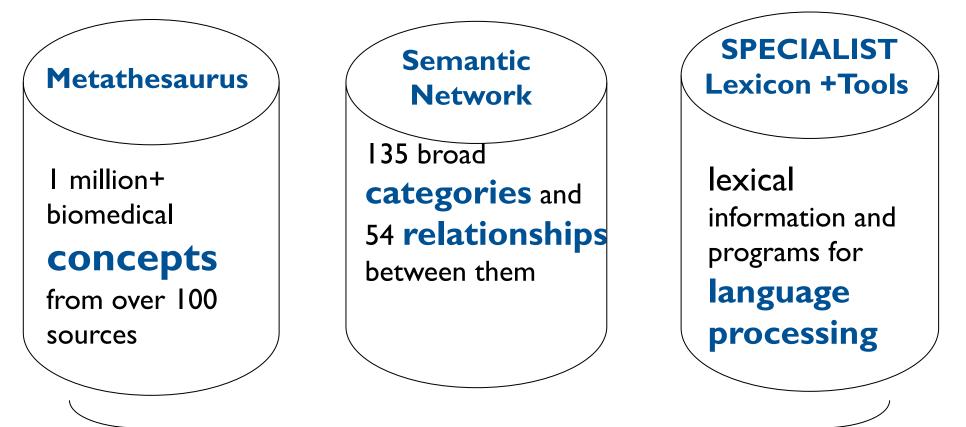
factor Xa can induce mesangial cell proliferation through the activation of ERK_protein via PAR2_protein in mesangial cells

Results

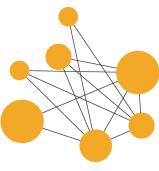
		Original	Additional Memory	Difference
Enzyme	Precision	0.24	0.37	0.13
Events	Recall	0.27	0.20	-0.07
	F-measure	0.26	0.26	0.00
Receptor	Precision	0.08	0.34	0.26
Events	Recall	0.17	0.12	-0.05
	F-measure	0.11	0.18	0.07
	Precision	0.16	0.36	0.20
Total	Recall	0.24	0.18	-0.06
	F-measure	0.19	0.24	0.05



LEXICAL RESOURCES for BioNLP



The importance of lexical resources


- Need to characterize the linguistic behavior of terms to establish word meaning in context
 - Morphosyntactic behavior
 - inflectional patterns
 - part of speech
 - argument structure
 - Semantic information
- Need to recognize different terms that express the same or closely related meanings
 - To support database integration, multi-database querying
 - To enable generalization of information extraction templates
 - To support general text understanding and meaning analysis (e.g. semantic reasoning over text or during text processing)

Unified Medical Language System

3 Knowledge Sources used separately or together

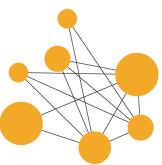
Metathesaurus

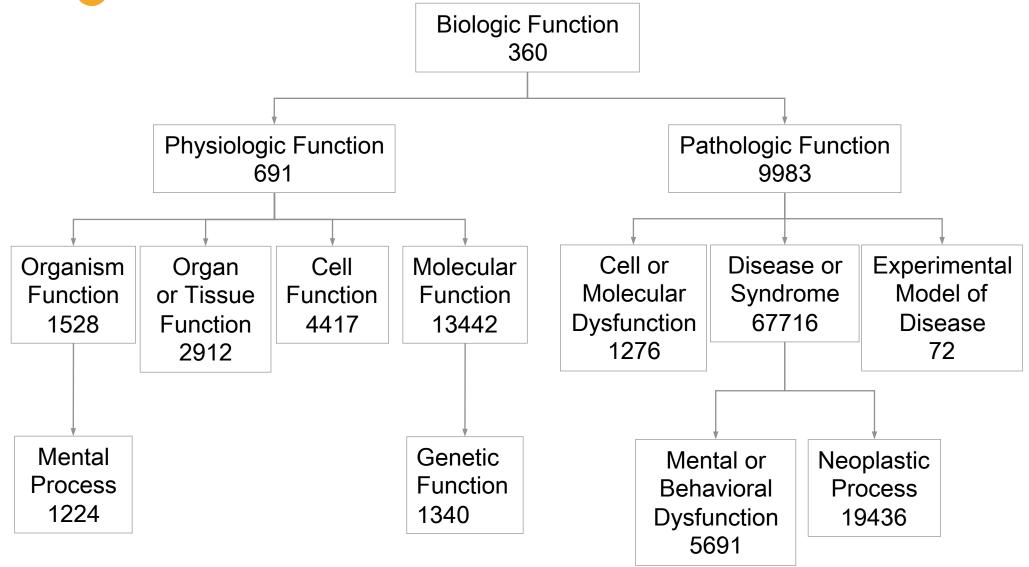
- 100+ general and specialized biomedical vocabularies
- I7 languages (63% English)
- I million+ concepts; 6 million+ names
- I00K+ relationships (hierarchical, semantic, statistical and mapping relationships)
- Distributed in a common electronic format

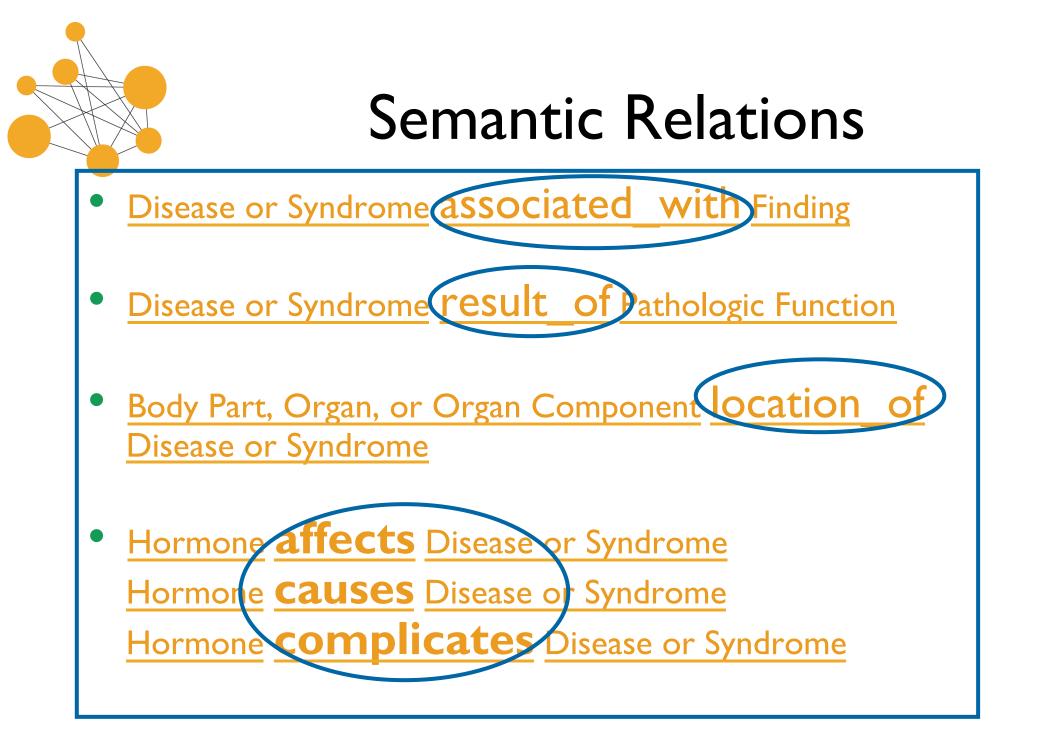
Metathesaurus Concepts

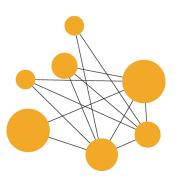
- Synonymous terms clustered into a concept
- Unique identifier (CUI) is assigned
- Source information preserved

Addison's disease	SNOMED CT	PT	363732003
Addison's Disease	MedlinePlus	PT	TI233
Addison Disease	MeSH	PT	D000224
Primary Adrenal Insufficiency	MeSH	EN	D000224
Primary hypoadreanlism	MedDRA	LT	10036696
syndrome, Addison			

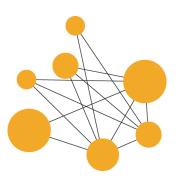

Addison's disease



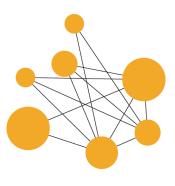

Semantic Network


- I 35 Semantic Types
 - Broad subject categories in 2 hierarchies
 - Assigned to all Metathesaurus concepts
- 54 Semantic Relationships
 - Useful, important links between Types
 - Hierarchical "isa" and associative relations
- Categorize the Metathesaurus
- Enhance meaning of concepts

"Biologic Function" hierarchy



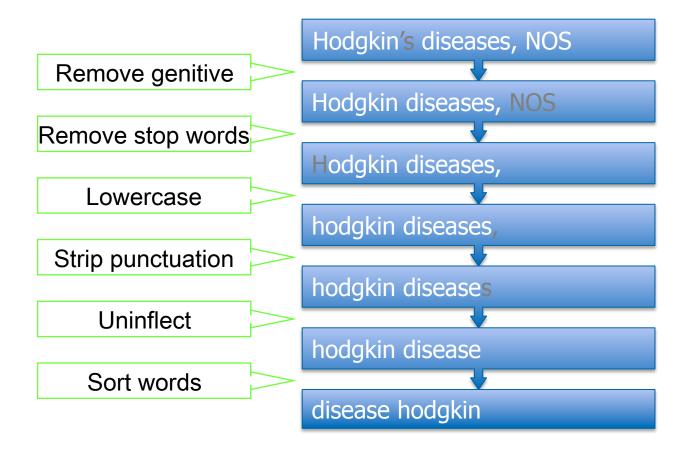
SPECIALIST Lexicon

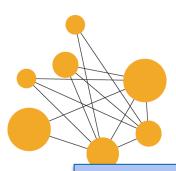

- English lexicon of 300K+ common words and biomedical terms
- Lexical records encode information on:
 - Syntax
 - Morphology
 - Orthography
- Used with associated lexical tools
 - In Metathesaurus production
 - In natural language processing applications

SPECIALIST Lexical Entry

{base=disease entry=E0023270 cat=noun variants=reg variants=uncount compl=pphr(of,np|bone|) compl=pphr(of,np|breast|) compl=pphr(of,np|liver|) compl=pphr(of,np|ovary|)} Base form Unique identifier Part of speech Lexical variants Prepositional

Prepositional phrase complements


Lexical Tools


- Manage lexical variation in biomedical terminologies and text
- Used separately or with SPECIALIST Lexicon
- Perform transformations selected and ordered by users
- 3 primary programs: normalizer, word index generator, lexical variant generator

http://umlslex.nlm.nih.gov/lvg/current/

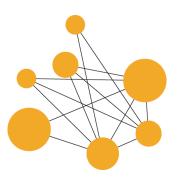
Normalization I

Normalization 2

Hodgkin Disease **HODGKINS DISEASE** Hodgkin's Disease **Disease**, Hodgkin's Hodgkin's, disease **HODGKIN'S DISEASE** Hodgkin's disease **Hodgkins Disease** Hodgkin's disease NOS Hodgkin's disease, NOS **Disease**, Hodgkins **Diseases, Hodgkins Hodgkins Diseases Hodgkins disease** hodgkin's disease Disease, Hodgkin

normalize

disease hodgkin



BioFrameNet

Andrew Dolbey, PhD dissertation, 2009, BioFrameNet: a FrameNet Extension to the Domain of Molecular Biology

Transport Valence Pattern			
Transport_destination	Transported_Entity	Transporting_Entity	
PP[to]	NP	CNI	
Dep	Obj		
GRIF 82174 EntrezGene ID: 66013 [symbol:Arhgef9] PMID: 1521530			
TRANSLOCATES gephyrin to submembrane microaggregates CNI			

Transport Valence Pattern			
Transport_destination	Transported_Entity	ted_Entity Transporting_Entity	
PP[to]	NP	CNI	
Dep	Ext (subj)		
GRIF 72788 EntrezGene ID: 654817 [symbol: NCFIC] PMID: 1285569 p47phox is TRANSLOCATED to membrane ruffles through a VEGF- WAVEI pathway CNI			

ELDA BioLexicon

- Subcategorization frames + Event frames
 - -Roles: agent, theme, manner, instrument, destination, condition, rate, descriptive agent, descriptive theme, purpose, *location*, *temporal*
 - -Used annotations in Gene Regulation corpus and thematic hierarchies to guide linking
 - -Result: 668 event frames for 168 verbs

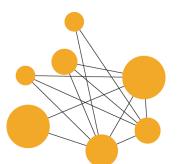
BioVerbNet preliminary effort

VIEW OR MAI

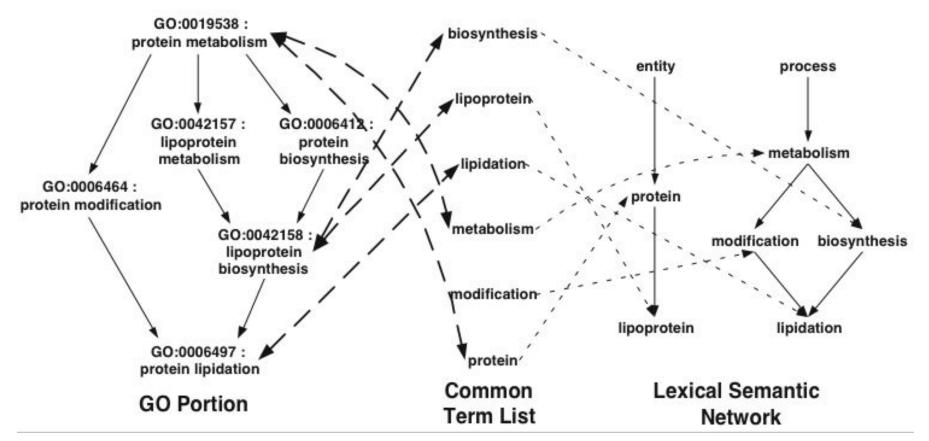
	Structural_modification-1 Post Comme Members: 22, Frames: 4		CLASS HIERARCHY
			STRUCTURAL_MODIFICATION-1*
	HYDROGENATE	PALMYTOYLATE	SULFATION
	HYDROXYLATE	PHOSPHORYLATE	SULPHATION
	HYPER-PHOSPHORYLATE	POLYUBIQUITINATE	SUMOYLATE
	METHYLATE	PRENYLATE	UBIQUITINATE
	MYRISTOYLATE	PROTANATE	
	PALMITOYLATE	SULFATION	
own about the substrates for FR	K5 in vivo , however it has been suggested to phosphorylate connex	in 43 [11] and the transcription factor MEE2C [12, 14]	
Swill about the substrates for EA	KS in vivo, nowever it has been suggested to phosphorylate connex	in 45 [11] and the transcription factor where 20 [12 - 14].	
ON(DURING(E), CAUSE, PATIENT)			
ION(DURING(E), CAUSE, PATIENT)	tyrosine phosphorylation in response to ligand (Figure 10A)."		
	tyrosine phosphorylation in response to ligand (Figure 10A) ."		
ied , we observed an increase in	tyrosine phosphorylation in response to ligand (Figure 10A)." PREP(DURING(E), ?PATIENT, LOCATION)		

g , the PDGFRÎ² dimerizes and is autophosphorylated on as many as 13 cytoplasmic tyrosine residues ."

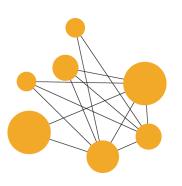
AT} LOCATION


TION(DURING(E), CAUSE, PATIENT) PREP(DURING(E), PATIENT, LOCATION)

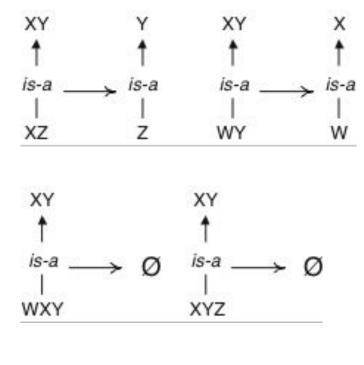
ither MEF2C has functions which are independent of its phosphorylation by ERK5 in vivo at this developmental stage, or that other kinases such as p38 can also phosphorylate the same sites on MEF2C as N AT} <u>PATIENT</u> TION(DURING(E), CAUSE, PATIENT) PREP(DURING(E), PATIENT, LOCATION)


BioLemmatizer

- New tool under development in our group
- Based on the MorphAdorner tool, using specialized lexicons
- Given {token, POS}
- Produce base form for token
- (default behavior for token w/out POS)



GO as a lexical semantic resource


- The Gene Ontology represents semantic relationships (is_a, part_of) between biological phrases representing molecular functions/processes
- Utilize the structure of the GO and lexical correspondences to infer relationships at the term level from relationships between phrases

Verspoor, C., C. Joslyn and G. Papcun (2003). "The Gene Ontology as a Source of Lexical Semantic Knowledge for a Biological Natural Language Processing Application". In Proceedings of the SIGIR'03 Workshop on Text Analysis and Search for Bioinformatics.

Inferring Lexical Relations from GO

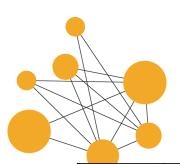
$\begin{array}{ccc} XZ & Z \\ \uparrow & \uparrow \\ is - a & \longrightarrow & is - a \\ | & & | \\ XYZ & YZ \end{array}$

Verspoor et al. (2003)

Parallel rule:

vanillin metabolism *isa* aldehyde metabolism \Rightarrow vanillin isa aldehyde

lipoprotein biosynthesis isa lipoprotein metabolism \Rightarrow biosynthesis isa metabolism

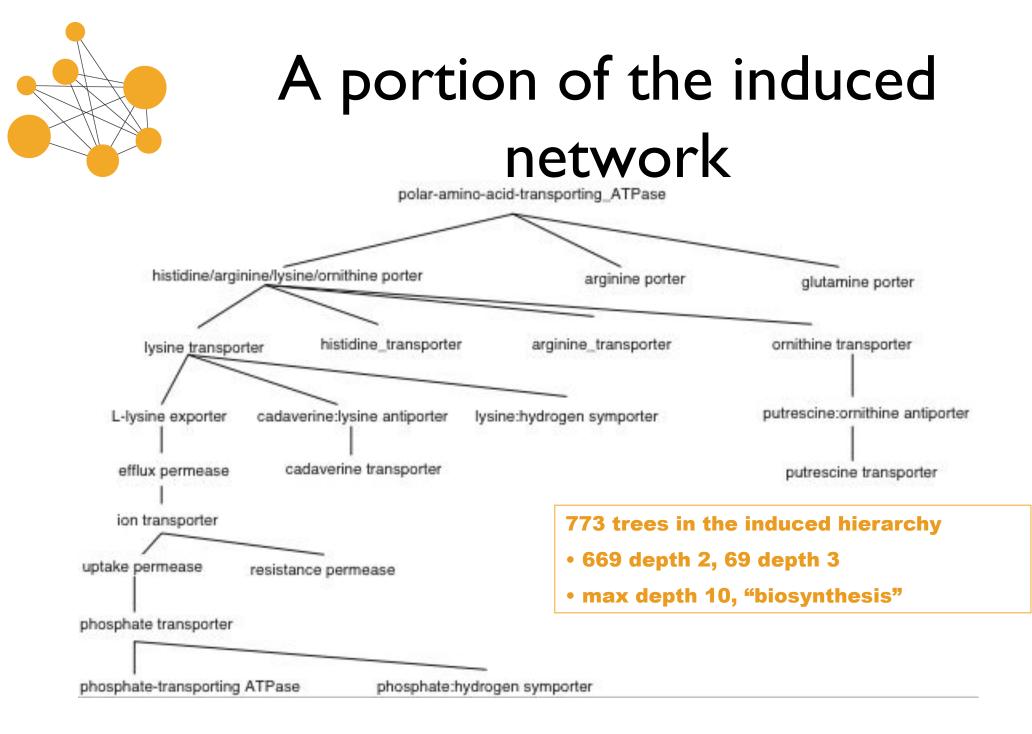

Modifier rule: blocking rule for modifiers

Positive gravitactic behavior *isa* gravitactic behavior $\Rightarrow \emptyset$ Larval feeding behavior (sensu insecta) *isa* Larval feeding behavior $\Rightarrow \emptyset$

Insertion rule: right-branching heuristic

adult feeding behavior *isa* adult behavior \Rightarrow feeding behavior *isa* behavior

chemosensory jump behavior *isa* chemosensory behavior ⇒ jump behavior *isa* behavior




Relations inferred (with counts)

581	biosynthesis isa metabolism	14	inhi
577	catabolism isa metabolism	13	ribc
44	receptor isa binding	11	pro
38	deoxyribonucleoside isa nucleoside	11	diffe
35	ribonucleoside isa nucleoside	11	dec
33	permease isa transporter	10	rRN
27	Saccharomyces isa Fungi	10	mR
22	porter isa transporter	9	snF
15	oxidation isa metabolism	8	mo
14	tRNA isa RNA	8	me

14inhibitor isa regulator13ribonucleotide isa nucleotide11proliferation isa activation11differentiation isa activation11deoxyribonucleotide isa nucleotide10rRNA isa RNA10mRNA isa RNA9snRNA isa RNA8modification isa metabolism8methylation isa modification

6,364 unique relations inferred; only 70 already exist in the GO 3,270/6,589 unique labels inferred that do not occur in the GO as terms

Acknowledgements

- Kevin B. Cohen
- NIH/NLM and NSF grants to me and to Larry Hunter
- Other members of the Center for Computational Pharmacology at University of Colorado Anschutz Medical Campus (Denver)

• THANK YOU!

disk drive (was) down (at) 11/16-2305.
(has) select lock.
spindle motor is bad.
(is) awp spindle motor.
(disk drive was) up (at) 11/17-1236.
replaced spindle motor.

Biomedical verb semantics

Semantic Network (NLM) Can relate objects in an ontology Friedman et al. (2002) Complex embedding McDonald et al. (2005) Arity > binary LSAT **Applied PASBio PAS to information extraction Ko**gan et al. (2005) General & medical domains require different PAS

computational bioscience program • university of colorado school of medicine

Some recent history

2004: PASBio publication (BMC Bioinformatics)

2005: Extension of PASBio to medical **pr**edicates (Kogan et al., AMIA)

computational bioscience program • university of colorado school of medicine