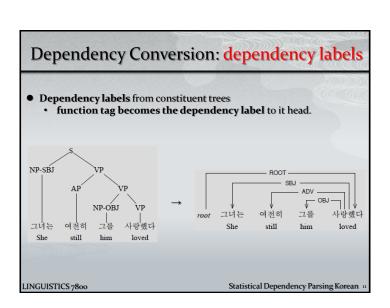

Less work done on dependency parsing in Korean because of the lack of training data in dependency structure. Convert constituent Treebank in Korean to dependency Treebank by applying head-percolation rules and heuristics How to extract useful features from morphologically rich Korean ∠∴™ ∠/NNG + ∴/XSV + ™/EF talk (verb) talk(noun) do ending marker Parsing evaluation three different genres with gold-standard & automatic morphological analysis impact of fine vs. coarse-grained morphologies on dependency parsing LINGUISTICS 7800 Statistical Dependency Parsing Korean 2

In Dependency Treebank and Parsing No restriction on word-order unlike phrase structure Suitable for flexible word-order and morphologically rich languages Korean (SVO, but free order with case particles) For Korean dependency parsing, use Sejong constituent Treebank (6oK sentences)



Dependency Conversion: head-percolation Head-percolation rules in Sejong Treebank · find the head of the phrase and make its dependent · generate dependency trees from constituent trees and guarantee dependency trees well-formed (root, head, connected, acyclic) r VP; VNP; S; NP | AP; Q; * 1 S|VP|VNP|NP;Q;* r NP;S;VP;VNP;AP;* r VP; VNP; NP; S; IP; * r VNP; NP; S; * r AP; VP; NP; S; * r DP; VP; * r IP; VNP; * X|L|R r * LINGUISTICS 7800 Statistical Dependency Parsing Korean

Pependency Conversion: heuristics • Heuristics • resolve some special cases (e.g., coordination) • constituent and dependency trees for 'I and he and she left home' • she is the head of both I and he. NP-SBJ NP-CNJ NP-SBJ NP-OBJ VP NP-CNJ NP-SBJ NP-OBJ VP NP-CNJ NP-SBJ NP-OBJ NP-CNJ NP-CNJ NP-SBJ NP-OBJ NP-CNJ NP-CNJ NP-SBJ NP-OBJ NP-CNJ NP-SBJ NP-OBJ NP-CNJ NP-CNJ NP-SBJ NP-OBJ NP-CNJ NP-SBJ NP-OBJ NP-CNJ NP-CNJ NP-SBJ NP-OBJ NP-CNJ NP-CNJ NP-SBJ NP-OBJ NP-CNJ NP-CNJ NP-CNJ NP-SBJ NP-OBJ NP-CNJ NP

Dependency Conversion: dependency labels Algorithm 1 shows how to infer the other labels. ROOT is the dependency label of the root node. · ADV is adverbials. (A|D|N|V) MOD are (adverb, adnoun, noun, verb) modifiers. **input**: (c, p), where c is a dependent of p. output: A dependency label l as $c \leftarrow p$. begin if p = root then ROOT $\rightarrow l$ elif c.pos = AP then $ADV \rightarrow l$ elif p.pos = AP then $AMOD \rightarrow l$ elif p.pos = DP then $DMOD \rightarrow l$ elif p.pos = NP then $NMOD \rightarrow l$ elif $p.pos = VP \mid VNP \mid IP$ then $VMOD \rightarrow l$ Algorithm 1: Getting inferred labels. LINGUISTICS 7800 Statistical Dependency Parsing Korean 12

Morphological Analyzers: IMA and Mach

- Two systems to generate automatic morphemes and POS tags
 - Intelligent Morphological Analyzer (IMA): fine-grained & rich POS tag
 - Mach (Shim & Yang 2002): coarse-grained POS tag
 - mapping between POS tags generated by two systems for comparing the impact of fine vs. coarse grained morphologies

NN	\rightarrow	NNG NNP SL SH	VX	\rightarrow	VX (verb)	SN	\rightarrow	XSN
NX	\rightarrow	NNB	AX	\rightarrow	VX (adjective)	SV	\rightarrow	XSV
NP	\rightarrow	NP	DT	\rightarrow	MM	SJ	\rightarrow	XSA
NU	\rightarrow	NR SN	AD	\rightarrow	MA *	IJ	\rightarrow	IC
VI	\rightarrow	VV (intransitive)	JO	\rightarrow	J*	NR	\rightarrow	NF
VT	\rightarrow	VV (transitive)	EP	\rightarrow	EP	UK	\rightarrow	NA NV XR
AJ	\rightarrow	VA VCN	EM	\rightarrow	EF EC ET*	SY	\rightarrow	SF SP SS SE SO SW
CP	\rightarrow	VCP	PF	\rightarrow	XPN			

Table 5: Mappings between POS tags generated by Mach and IMA. In each column, the left-hand and right-hand sides show POS tags generated by Mach and IMA, respectively.

LINGUISTICS 7800

Statistical Dependency Parsing Korean 13

Statistical Dependency Parsing Korean 15

Dependency Parsing

Feature extraction

LINGUISTICS 7800

- · extract features from POS tags
- some types of morphemes used to extract features for dependency parsing models

The first morpheme

LS
The last morpheme before JO|DS|EM

JK
Particles (J* in Table 1)

DS
Derivational suffixes (XS* in Table 1)

EM
Ending markers (E* in Table 1)

PY
The last punctuation, only if there is no other morpheme followed by the punctuation

Dependency Parsing

- Parsing algorithm
 - Transition-based dependency parsing approach (Choi and Palmer 2011)
- Machine learning alogrithm
 - Liblinear L2-regularized L1-loss SVM

LINGUISTICS 7800

Statistical Dependency Parsing Korean 1

Dependency Parsing

- Feature extraction example
 - · the types of morphemes extracted from the tokens

낙랑공주는 → 낙랑/NNP+공주/NNG+는/JX

Nakrang + Princess + JX

호동왕자를 → 호동/NNP+왕자/NNG+를/JKO

Hodong + Prince + IKO

Hodong + Prince + JKO 사랑했다. → 사랑/NNG+하/XSV+았/EP+다/EF+/SF

Love + XSV + EP + EF +

FS LS JK DS EM PY 낙당/NNP 공주/NNG 는/JX - - -호동/NNP 왕자/NNG 를/JKO - - -사랑/NNG - - 하/XSV 다/EF //SF

LINGUISTICS 7800 Statistical Dependency Parsing Korean 16

Experiments: corpora

- Grouping Sejong corpora into 6 genres
 - Newspaper (NP), Magazine (MZ), Fiction (FI), Memoir (ME), Informative Book(IB), Educational Cartoon (EC)
 - These corpora are divided into training(T), development(D), and evaluation sets(E) which ensures the robustness of parsing model.

	NP	MZ	FI	ME	IB	EC
T	8,060	6,713	15,646	5,053	7,983	1,548
D	2,048	-	2,174	-	1,307	-
Е	2,048	-	2,175	-	1,308	-

Table 10: Number of sentences in training (T), development (D), and evaluation (E) sets for each genre.

LINGUISTICS 7800

Statistical Dependency Parsing Korean 17

Experiments: evaluations

	Gold, fine-grained			Auto	, fine-gr	ained	Auto, coarse-grained		
	LAS	UAS	LS	LAS	UAS	LS	LAS	UAS	LS
NP	82.58	84.32	94.05	79.61	82.35	91.49	79.00	81.68	91.50
FI	84.78	87.04	93.70	81.54	85.04	90.95	80.11	83.96	90.24
IB	84.21	85.50	95.82	80.45	82.14	92.73	81.43	83.38	93.89
Avg.	83.74	85.47	94.57	80.43	83.01	91.77	80.14	82.89	91.99

Table 11: Parsing accuracies achieved by three models (in %). LAS - labeled attachment score, UAS - unlabeled attachment score, LS - label accuracy score

- The difference between [auto, fine-grained] and [auto, coarse-grained] models are small; 'a more fine-grained morphology is not necessarily a better morphology for dependency parsing'.
- High LS implies that models successfully learn labeling information from morphemes.
- Models perform worse on NP genre, and this needs to improve accuracy.

LINGUISTICS 7800

Statistical Dependency Parsing Korean 19

Experiments: evaluations

 Parsing model evaluation based on gold-standard morphology[gold, fine-grained], IMA [auto, fine-grained], and Mach [auto, coarse-grained]

	Gold, fine-grained			Auto	, fine-gr	ained	Auto, coarse-grained		
	LAS	UAS	LS	LAS	UAS	LS	LAS	UAS	LS
NP	82.58	84.32	94.05	79.61	82.35	91.49	79.00	81.68	91.50
FI	84.78	87.04	93.70	81.54	85.04	90.95	80.11	83.96	90.24
IB	84.21	85.50	95.82	80.45	82.14	92.73	81.43	83.38	93.89
Avg.	83.74	85.47	94.57	80.43	83.01	91.77	80.14	82.89	91.99

Table 11: Parsing accuracies achieved by three models (in %). LAS - labeled attachment score, UAS - unlabeled attachment score, LS - label accuracy score

- On the average LAS, [gold, fine-grained] better than [auto, fine-grained]
- [auto, fine-grained] has a POS tagging accuracy of 94.66% on correctly segmented morphemes.

LINGUISTICS 7800

Statistical Dependency Parsing Korean 18

Project

- Based on Sejong Treebank
 - Make the dependency labels in Korean more rich
 - Compare dependency labels in English with ones in Korean AGENT, CSUBJ, CSUBJPASS, EXPL, NSUBJ, NSUBJPASS, ATTR, DOBJ, IOBJ, OPRD, AUX, AUXPASS, HMOD, HYPH, ACOMP, CCOMP, XCOMP, COMPLM, ADVCL, ADVMOD, etc.
 - Find the rules and morphemes for generating the dependency labels in Korean

LINGUISTICS 7800

Statistical Dependency Parsing Korean 20