EPIC
Empowering the Public with Information in Crisis
Reason for EPIC

In disasters, citizens are the first responders
 ○ Emergency crews come only later
 ○ volunteers tend to self organize and assist others

"There is no THEY to tell people what to do, people need to rely on themselves to do it."

People are constantly connected to technology
 ○ There is constant information being produced and made instantly public by these first responders
The Goal

Take all of the publicly-available, grassroots, peer-generated information, decide if it's trustworthy, secure, and accurate and combine it with official sources for optimal, local decision making by members of the public
Who This Requires

To make this possible, experts in the following fields are required:

Software engineering
Information science
Human-computer interaction
Information extraction
Natural language processing
Network security
Telecom policy
Emergency management
Where is the Information

Massive amounts of information is uploaded realtime to the internet

Blogs
Image Sites
Video Sites
Social Networking Sites
Everywhere
What Kind of Information is being generated?

Where and when crisis-based info arises?

Who participates in creating the information?

Is the information accurate?
 - If not, will it be corrected?

Is the information timely?

What the information is focusing on?
 - is it helpful to the situation?
How Can All The Data Be Combined

How much data is created for a single event?

How many different mediums are used?
- Text
- Pictures
- Video

Where is all of this data stored?
How can Information Extraction and NLP be Used

The diversity on volume of useful data provides a challenge for current NLP and information extraction techniques.

It is important to develop a robust system that can accurately extract relevant information to be used.
How Security Plays a Role

The data people put on the internet is not always publicly available

In certain events, people and locations could suffer from broadcasting information

Anonymity in a system like this can result in individuals providing false information
Public Policy

The federal government, states, and other countries all have different laws and policies regarding information dissemination.

As a service, these laws, policies, and rules need to be maintained.
EPIC Specifically

EPIC is focusing on Twitter data

Simply put:
1) Comb the massive amounts of tweets
2) Identify relevant tweets regarding an event
3) Process and return useful information to the public
Initial Work

Picking out relevant information: warnings, road closures, and evacuations

The first step was Named Entity Tagging
- Person
- Location
- Organization
- Facility

Initial annotation task was to identify the syntactic span and entity class
Dataset was 200 Tweets from the 2009 Oklahoma Grassfires

Used Knowtator, a tool built within the Protege Framework

The tool is data driven, so certain annotations never emerged
Velma area residents: say to take Old Hwy to Speedy G to safely evacuate. Stephens Co Fairgrounds in Duncan for shelter

Results

If both span and class required to be the same
F-Score of 56.27

Same class and overlapping spans
F-Score of 72.85

Span matching is difficult for all entity classes
Discussions

These are lower than other published results BUT, crisis communication is different from printed text or broadcasts.

Tweets are only 140 characters which limit the syntactic and semantic context
 Can lead to ambiguity

This is a new application of annotation practices in a uniquely challenging domain!
The Next Step

Use four different events
- Red River Flood 2009
- Oklahoma Grassfires 2009
- Haiti Earthquake 2010
- Red River Flood 2010

500 tweets were gathered from each event for training data
Preliminary Analysis

Correlation between tweets that were expressed objectively, and those that contributed to situational awareness (Location of hazzard or state of recovery)

Subjective tweets seemed to correlate with tweets that didn't contribute to situational awareness (Sympathy and support/prayer)
Annotation

Two annotators independently coded tweets with four qualities.
- Communication of situational awareness
- Objective vs. Subjective
- Formal vs. Informal in style
- Personal vs. Impersonal

Expert annotator adjudicated the results into a gold standard.
Situational Awareness Tweets

Provides SA
Niece and her dad are being evac'd in MWC, fire is headed towards SIL and her boyfriend in Harrah

Does not provide SA
Tweeps please pray for the families and firefighters battling these crazy fires in Oklahoma
Objective vs. Subjective Tweets

Objective
OHP is responding to Cater County to assist with RD closures and evacuations due to fires in and near Tutums. Approx 20 homes in danger

Subjective
so proud to be from Oklahoma. The outpouring of support for those devastated by the fires is amazing
Formal vs. Informal Tweets

Formal
 Staging for fires in Elk City Area is currently at Elk City FD

Informal
 landed in fargo today...locals say red river will crest at 43 feet...worse then 97 flood
Personal vs. Impersonal Tweets

Personal
Our best hopes and wishes go out to the folks in Manitoba. As the Red River is about to crest.

Impersonal
Canadian and Oklahoma Counties under RED FLAG FIRE WARNING until 10 p.m. This warning means conditions are ripe for wildfire outbreaks.
Annotation Results

Agreement on objectivity and personal/impersonal codes are consistent.

Agreement on formal/informal is lower.
 This is more of an abstract idea.

Depending on the event, some ideas are more straightforward than with other events.
<table>
<thead>
<tr>
<th></th>
<th>Objectivity</th>
<th>Register</th>
<th>Pers./Imp.</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ITA</td>
<td>κ</td>
<td>ITA</td>
<td>κ</td>
</tr>
<tr>
<td>RR09</td>
<td>.93</td>
<td>.86</td>
<td>.79</td>
<td>.57</td>
</tr>
<tr>
<td>RR10</td>
<td>.92</td>
<td>.83</td>
<td>.90</td>
<td>.80</td>
</tr>
<tr>
<td>Haiti</td>
<td>.89</td>
<td>.78</td>
<td>.86</td>
<td>.72</td>
</tr>
<tr>
<td>OK Fire</td>
<td>.97</td>
<td>.94</td>
<td>.90</td>
<td>.80</td>
</tr>
</tbody>
</table>

Table 1: ITA and Kappa statistics for inter-rater agreement across all datasets for each annotation category.

ITA is the agreement between annotators
Kappa is the adjusted value of ITA due to 0.5 chance or agreement
Feature Extraction

All non-tweet components were removed
- Hashtags
- URLs
- symbols(RT, @*)

The Stanford part of speech tagger was used to tag features
Machine Learning

All of this was used as training data

Both Naive Bays and Maximum Entropy were used though Maximum Entropy produced a better result
Final Results

<table>
<thead>
<tr>
<th>Features used</th>
<th>RR09</th>
<th></th>
<th>RR10</th>
<th></th>
<th>Haiti</th>
<th></th>
<th>OKFire</th>
<th></th>
<th>Uniform</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NB</td>
<td>ME</td>
<td>NB</td>
<td>ME</td>
<td>NB</td>
<td>ME</td>
<td>NB</td>
<td>ME</td>
<td>NB</td>
<td>ME</td>
</tr>
<tr>
<td>Unigrams (Baseline)</td>
<td>74.0</td>
<td>82.2</td>
<td>74.4</td>
<td>89.0</td>
<td>81.4</td>
<td>81.4</td>
<td>84.3</td>
<td>83.4</td>
<td>79.8</td>
<td>79.3</td>
</tr>
<tr>
<td>Unigrams, Bigrams</td>
<td>73.2</td>
<td>81.1</td>
<td>71.0</td>
<td>88.7</td>
<td>79.8</td>
<td>80.2</td>
<td>83.2</td>
<td>82.4</td>
<td>80.3</td>
<td>79.8</td>
</tr>
<tr>
<td>Unigrams, POS</td>
<td>75.3</td>
<td>79.1</td>
<td>80.0</td>
<td>87.8</td>
<td>83.3</td>
<td>83.9</td>
<td>83.2</td>
<td>82.6</td>
<td>80.8</td>
<td>83.3</td>
</tr>
<tr>
<td>Objective (annotated), POS, unigrams</td>
<td>77.7</td>
<td>84.0</td>
<td>82.2</td>
<td>88.7</td>
<td>82.8</td>
<td>86.5</td>
<td>83.8</td>
<td>84.1</td>
<td>81.0</td>
<td>83.0</td>
</tr>
<tr>
<td>Objective (predicted), POS, unigrams</td>
<td>76.5</td>
<td>84.8</td>
<td>81.0</td>
<td>88.4</td>
<td>82.2</td>
<td>85.3</td>
<td>79.4</td>
<td>84.7</td>
<td>79.2</td>
<td>82.3</td>
</tr>
<tr>
<td>Objective (OpinionFinder), POS, unigrams</td>
<td>71.5</td>
<td>82.4</td>
<td>76.4</td>
<td>85.8</td>
<td>82.0</td>
<td>84.4</td>
<td>80.2</td>
<td>82.6</td>
<td>82.3</td>
<td>81.9</td>
</tr>
<tr>
<td>Formal (annotated), POS, unigrams</td>
<td>76.4</td>
<td>82.7</td>
<td>82.2</td>
<td>88.8</td>
<td>84.2</td>
<td>86.2</td>
<td>82.3</td>
<td>87.9</td>
<td>80.0</td>
<td>81.8</td>
</tr>
<tr>
<td>Formal (predicted), POS, unigrams</td>
<td>75.2</td>
<td>82.1</td>
<td>80.8</td>
<td>87.4</td>
<td>83.3</td>
<td>84.7</td>
<td>79.8</td>
<td>84.4</td>
<td>79.7</td>
<td>81.3</td>
</tr>
<tr>
<td>Impersonal (annotated), POS, unigrams</td>
<td>78.2</td>
<td>84.0</td>
<td>82.2</td>
<td>89.0</td>
<td>84.5</td>
<td>86.3</td>
<td>83.0</td>
<td>85.5</td>
<td>83.8</td>
<td>83.5</td>
</tr>
<tr>
<td>Impersonal (predicted), POS, unigrams</td>
<td>75.9</td>
<td>83.9</td>
<td>81.4</td>
<td>87.1</td>
<td>83.1</td>
<td>83.7</td>
<td>80.2</td>
<td>85.1</td>
<td>79.8</td>
<td>81.5</td>
</tr>
<tr>
<td>All features (predicted), POS, unigrams</td>
<td>76.1</td>
<td>84.1</td>
<td>80.2</td>
<td>88.6</td>
<td>83.5</td>
<td>88.8</td>
<td>81.0</td>
<td>87.1</td>
<td>80.2</td>
<td>84.5</td>
</tr>
</tbody>
</table>

Table 3: Average 10-fold cross validation accuracies for SA classifier. Best performance for each dataset is in boldface.
Breakdown

High baseline accuracy using only word and raw frequency as a feature

Most emergencies use certain words when conveying situation awareness

- Floods - depth, water level, crested
- Fire - grass fire, wildfire, burn
- All events - safe, evacuation, rescue

Note: using bigrams didn't improve anything
Using POS Tags generally improved overall classification

Specific POS tagging was implemented, but didn't show any improvements

- Adjectives only
- Messages in a specific tone
An increase in performance was seen when the gold standard tag for Objectivity was added as a feature.

Formal/Informal had a similar result as objectivity did and helped improve performance.

Overall, All features helped and together produced the best output.
Linguistic features

Help varied from event to event, but including Linguistic features reduced the error.

With large events like Haiti, a lot of 'noise' exists with the data. Linguistic features help
Additions

Data Collection

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Search Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gustav</td>
<td>gustav, hurricane</td>
</tr>
<tr>
<td>Haiti</td>
<td>haiti, earthquake, quake, shaking, tsunami, ouest, port-au-prince, temblement, tremblement de terre</td>
</tr>
<tr>
<td>Oklahoma Fires</td>
<td>okfire, oklahoma, grass fire, grassfire</td>
</tr>
<tr>
<td>Red River 2009</td>
<td>red river, redriver</td>
</tr>
<tr>
<td>Red River 2010</td>
<td>fmflood, flood10, red river, redriver, ccflood, fargoflood</td>
</tr>
</tbody>
</table>

Table 1: Dataset Search Terms
Catagorizing Tweets

1st Pass: remove off topic tweets and tweets that do not include situational awareness

2nd Pass - Coded as social environment, built environment or physical environment

3rd Pass - Adds empirical analysis of datasets from similar events from twitter research on what is communicated in disasters
<table>
<thead>
<tr>
<th>Second Pass Code</th>
<th>Third Pass Code</th>
</tr>
</thead>
</table>
| Social Environment | Advice - Information Space
Animal Management
Caution
Crime
Death
Evacuation
General Population Info.
Injury
Missing
Offer of Help
Preparation
Recovery
Request for Help
Request for Information
Rescue
Response - Community
Response - Formal
Response - Miscellaneous
Response - Personal
Sheltering
Status - Community/Population
Status - Personal |
| | Damage
Status - Infrastructure
Status - Personal Property
Status - Personal |
| Physical Environment | General Area Information
General Hazard Information
Historical Information
Predictions
Status - Hazard
Weather |

Tagger Agreement is around 0.9 for all passes
Future Work

Explore features to reduce false positive and negative rates

Active learning techniques so less data can cover a wide range of disasters

Integration of propbank style semantic role labeling

Embed into a larger system that analyzes features outside of the tweet text
My Project

Event extraction
 - Using sample tweets from the EPIC data
 - Make use of annotated tweets