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Overview 

• Written in 1999, IdentiFinder is a hidden Markov 

model (HMM) designed to recognize names, dates, 

times, and numerical quantities. 

• The IdentiFinder model was evaluated on data from 

the 6th and 7th Message Understanding Conferences 

(MUC) as well as the first Multilingual Entity Task 

(MET). 

• Both Spanish and English data was analyzed. 

 

The NER Task 

• The named entity recognition (NER) task is to 

identify all named locations, named persons, named 

organizations, dates, times, monetary amounts, and 

percentages in text. 

• This sounds simple, but there are issues that can 

complicate basic rule sets. 

The NER Task 
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Evaluation Metric 

A computer program is used to evaluate performance 

based on: 

• Precision 

• Recall 

• F Measure 

 

Evaluation Metric 

Precision: 

P = number of  correct responses / number of  

responses 

 

• A “response” is “an answer delivered by a name 

finder.” 

Evaluation Metric 

Recall: 

R = number of  correct responses / number correct in 

key 

 

• The key is “an annotated file containing the correct 

answers.” 

 

Evaluation Metric 

F measure: 

F = RP / ½(R+P) 
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Evaluation Metric 

What counts as correct? 

• Bikel et al. use MUC and MET standards. 

• Correct boundaries. 

• Correct labels. 

• Answers can be partially right if  only some 

conditions are met. 

Evaluation Metric 

MUC and MET Label Types 

• Entity (ENAMEX): person, organization, location 

• Time expression (TIMEX): date, time 

• Numeric expression (NUMEX): money, percent 

Why NER? 

• “It seems to be both useful and solvable.” 

• The NER problem is fairly easy in mixed case 

English text, but becomes an interesting problem 

when dealing with other languages where case 

information is not available, or non-text modalities 

(like speech). 

• Representative of  a general challenge for learning. 

Why NER? 

Why a learning algorithm? 

• Learning algorithms are more generalizable than 

hand crafted rules. 

• They work better for non-text modalities. 

• A learning algorithm reduces the need for human 

input. 

• Each new source of  text for a rule based system 

requires large scale tweaking of  the rule set. 
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What’s an HMM? 

http://homepages.inf.ed.ac.uk/group/sli_archive/slip0809_c/s0562005/theory.html 

What’s an HMM? 

http://www.quora.com/Hidden-Markov-Models/What-is-a-simple-explanation-of-the-Hidden-Markov-Model-algorithm 

The Hidden Markov Model 

Overview 

NER can be viewed as a classification problem in 

which: 

• Only one label can be assigned to a word. 

• Every word is either part of  some name or not part 

of  any name. 

The Hidden Markov Model 
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The Hidden Markov Model 

Overview 

• Bikel et al.’s model assigns to every word either one 

of  the desired classes or the label NOT-A-NAME. 

• The HMM has a model for each of  the desired 

classes, as well as the rest of  the training text. 

• An arbitrary number of  classes can be added to the 

system at run time. 

The Hidden Markov Model  

Overview 

• In addition to all this, there are two special 

states: 

• START-OF-SENTENCE 

• END-OF-SENTENCE 

 

The Hidden Markov Model 

• Within each of  the established regions, a model for computing the 
likelihood of  words occurring within that region (name-class) is 
used. 

• This model is a bigram language model. 

• The likelihood of  a given word is based solely on the previous word. 

• Every word is represented by a state.  There is a probability 
associated with every transition to the next word. 

• Given this, the likelihood of  a sequence of  words W1 through Wn 
is found using: 

 Πn
i=1 p(wi | wi−1) 

• A special +begin+ word is used to compute the likelihood of  W1. 

The Hidden Markov Model 

• In addition to word sequences, the most likely 

sequence of  classes must also be found.   

• That is to say: Max Pr (NC | W) 

• NC: name-class 

• W: sequence of  words 

• This paper assumes a generative model where the 

HMM generates the sequence of  words and labels 

using Bayes Rule: 

• Pr(NC | W) = Pr(W, NC) / Pr (W) 
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The Hidden Markov Model 

The Generation of  Words and Word Classes 

1. Select a name-class NC, conditioning on the previous 

name-class and the previous word. 

2. Generate the first word inside that name-class, 

conditioning on the current and previous name classes. 

3. Generate all subsequent words inside the current name-

class, where each subsequent word is conditioned on its 

immediate predecessor (as per a standard bigram 

model). 

The Hidden Markov Model 

• These three steps are then repeated until the entire 

observed word sequence is generated. 

• The entire space of  all possible name-class 

assignments is searched, maximizing the numerator 

of  the previous Baye’s rule equation. 

The Hidden Markov Model 

• Constructing the model in this way means that each 
type of  “name” should be viewed as its own 
language, with separate bigram probabilities for 
generating its words. 

• This affects the the intuitions regarding the model in 
the following ways: 

• There is generally predictive internal evidence 
regarding the class of  a desired entity. 

• Logical external evidence often suggests the boundaries 
and class of  one of  the desired expressions. 

 

Word Features 

• This part of  the language model is language-dependent. 

• Fortunately, though, the implementation is only roughly 
twenty lines of  code long. 

• Word features are conceptualized as ordered pairs (or 
two-element vectors) composed of  a word and its word 
feature. 

• <w, f> 

• The word feature is a deterministic computation 
performed on each word as it is added to or looked up in 
the dictionary. 
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Word Features Formal Model 

Top Level Model 

1. A model to generate a name-class. 

2. A model to generate the first word in a name-class. 

3. A model to generate all subsequent words in a 

name class. 

Formal Model 

• In order to generate the first word, a transition must 

be made from one name-class to another, as well as 

calculating the likelihood of  that word. 

• This works because words preceding a name class 

can be hugely helpful in determining the class 

(words like Mr.).  Words following a name class can 

help determine the following class, as well. 

Formal Model 

• Generating the first word of  the name-class: 

• PR(NC | NC-1, w-1) ⋅ PR(<w, f>first | NC, NC-1) 

• Generating all but the first word: 

• Pr(<w, f> | <w, f>-1, NC) 

• Generating the final word (+end+ is a special word 

allowing any word to be the final word in its class): 

• Pr(<+end+, other> | <w, f>final | NC) 



4/23/2013 

8 

Formal Model 

• It would be useless to have the first word of  a new 

name-class be generated on the +end+ word of  a 

previous class. 

• This is overcome by conditioning the new class on 

the last real word in the previous class. 

• It’s still allowed to be +end+ if  the previous class is 

START-OF-SENTENCE.  Otherwise it’s the last 

observed word. 

Dealing with Unknown Words 

• Ideally, the training data would contain every instance that is observed in 
the data.  This, unfortunately, is rarely the case. 

• All unknown words are mapped to the token _UNK_. 

• Some training data is withheld in order to train an unknown word model. 

• This wins the authors an idea of  how often _UNK_ appears in their training data. 

• 50% of  data is held, and an unknown word model is trained on that set (the 
vocabulary was built on the first 50%). 

• The counts in that model are stored in a data file. 

• Then the other 50% is held out, and the bigram counts of  this file are 
concatenated with the counts in the first unknown training file. 

• This allows the likelihood of  unknown data to be calculated using all of  
the data. 

Back-off  Strategy 

• Whether a bigram model contains an unknown word or 
not, it’s possible that a given bigram may still be 
unknown (never seen in the training data). 

• The model gives a weight to the likelihood that a back-off  
is necessary. 

• A back up model is built to decrease specificity of  a 
probability when necessary. 

• Pr(NC | NC-1, w-1) 

• Pr(NC | NC-1) 

• Pr(NC) 

• 1 / number of  name-classes 

Results 

• Slightly worse performance than rule based NER on 
mixed case data. 

• The performance is close enough that the learning approach 
is likely still more useful, ultimately. 

• Performance on the Spanish data was worse than the 
English data. 

• Out performed all previous approaches when mixed case 
data was not available.  

• Required no labor to handle upper case or speech format. 

• Only required a few machine cycles to convert mixed case 
training data to other forms, and retrain. 
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Conclusions 

• None of  the formalisms in this paper were new. But 

applying them to the NER task, as well as the model 

itself  was novel. 

• This paper produced an efficient learning algorithm 

that is largely language independent, and that 

performs near human levels. 

• To the authors knowledge, this model produced a 

higher f-measure than any other learned NE system 

at the time. 

Our Project 

• Currently, the SHARP grant uses an NER system to 

pre-annotate clinical records. 

• It’s not very good. 

• James is going to make a better one. 

• I will analyze the data output of  his system and 

identify patterns in the errors.  He’ll use this to 

improve the system. 


