
4/23/2013

1

An Algorithm that

Learns What’s in a

Name

Daniel M. Bikel

Richard Schwartz

Ralph Weischedel

Overview

• Written in 1999, IdentiFinder is a hidden Markov

model (HMM) designed to recognize names, dates,

times, and numerical quantities.

• The IdentiFinder model was evaluated on data from

the 6th and 7th Message Understanding Conferences

(MUC) as well as the first Multilingual Entity Task

(MET).

• Both Spanish and English data was analyzed.

The NER Task

• The named entity recognition (NER) task is to

identify all named locations, named persons, named

organizations, dates, times, monetary amounts, and

percentages in text.

• This sounds simple, but there are issues that can

complicate basic rule sets.

The NER Task

4/23/2013

2

Evaluation Metric

A computer program is used to evaluate performance

based on:

• Precision

• Recall

• F Measure

Evaluation Metric

Precision:

P = number of correct responses / number of

responses

• A “response” is “an answer delivered by a name

finder.”

Evaluation Metric

Recall:

R = number of correct responses / number correct in

key

• The key is “an annotated file containing the correct

answers.”

Evaluation Metric

F measure:

F = RP / ½(R+P)

4/23/2013

3

Evaluation Metric

What counts as correct?

• Bikel et al. use MUC and MET standards.

• Correct boundaries.

• Correct labels.

• Answers can be partially right if only some

conditions are met.

Evaluation Metric

MUC and MET Label Types

• Entity (ENAMEX): person, organization, location

• Time expression (TIMEX): date, time

• Numeric expression (NUMEX): money, percent

Why NER?

• “It seems to be both useful and solvable.”

• The NER problem is fairly easy in mixed case

English text, but becomes an interesting problem

when dealing with other languages where case

information is not available, or non-text modalities

(like speech).

• Representative of a general challenge for learning.

Why NER?

Why a learning algorithm?

• Learning algorithms are more generalizable than

hand crafted rules.

• They work better for non-text modalities.

• A learning algorithm reduces the need for human

input.

• Each new source of text for a rule based system

requires large scale tweaking of the rule set.

4/23/2013

4

What’s an HMM?

http://homepages.inf.ed.ac.uk/group/sli_archive/slip0809_c/s0562005/theory.html

What’s an HMM?

http://www.quora.com/Hidden-Markov-Models/What-is-a-simple-explanation-of-the-Hidden-Markov-Model-algorithm

The Hidden Markov Model

Overview

NER can be viewed as a classification problem in

which:

• Only one label can be assigned to a word.

• Every word is either part of some name or not part

of any name.

The Hidden Markov Model

4/23/2013

5

The Hidden Markov Model

Overview

• Bikel et al.’s model assigns to every word either one

of the desired classes or the label NOT-A-NAME.

• The HMM has a model for each of the desired

classes, as well as the rest of the training text.

• An arbitrary number of classes can be added to the

system at run time.

The Hidden Markov Model

Overview

• In addition to all this, there are two special

states:

• START-OF-SENTENCE

• END-OF-SENTENCE

The Hidden Markov Model

• Within each of the established regions, a model for computing the
likelihood of words occurring within that region (name-class) is
used.

• This model is a bigram language model.

• The likelihood of a given word is based solely on the previous word.

• Every word is represented by a state. There is a probability
associated with every transition to the next word.

• Given this, the likelihood of a sequence of words W1 through Wn
is found using:

 Πn
i=1 p(wi | wi−1)

• A special +begin+ word is used to compute the likelihood of W1.

The Hidden Markov Model

• In addition to word sequences, the most likely

sequence of classes must also be found.

• That is to say: Max Pr (NC | W)

• NC: name-class

• W: sequence of words

• This paper assumes a generative model where the

HMM generates the sequence of words and labels

using Bayes Rule:

• Pr(NC | W) = Pr(W, NC) / Pr (W)

4/23/2013

6

The Hidden Markov Model

The Generation of Words and Word Classes

1. Select a name-class NC, conditioning on the previous

name-class and the previous word.

2. Generate the first word inside that name-class,

conditioning on the current and previous name classes.

3. Generate all subsequent words inside the current name-

class, where each subsequent word is conditioned on its

immediate predecessor (as per a standard bigram

model).

The Hidden Markov Model

• These three steps are then repeated until the entire

observed word sequence is generated.

• The entire space of all possible name-class

assignments is searched, maximizing the numerator

of the previous Baye’s rule equation.

The Hidden Markov Model

• Constructing the model in this way means that each
type of “name” should be viewed as its own
language, with separate bigram probabilities for
generating its words.

• This affects the the intuitions regarding the model in
the following ways:

• There is generally predictive internal evidence
regarding the class of a desired entity.

• Logical external evidence often suggests the boundaries
and class of one of the desired expressions.

Word Features

• This part of the language model is language-dependent.

• Fortunately, though, the implementation is only roughly
twenty lines of code long.

• Word features are conceptualized as ordered pairs (or
two-element vectors) composed of a word and its word
feature.

• <w, f>

• The word feature is a deterministic computation
performed on each word as it is added to or looked up in
the dictionary.

4/23/2013

7

Word Features Formal Model

Top Level Model

1. A model to generate a name-class.

2. A model to generate the first word in a name-class.

3. A model to generate all subsequent words in a

name class.

Formal Model

• In order to generate the first word, a transition must

be made from one name-class to another, as well as

calculating the likelihood of that word.

• This works because words preceding a name class

can be hugely helpful in determining the class

(words like Mr.). Words following a name class can

help determine the following class, as well.

Formal Model

• Generating the first word of the name-class:

• PR(NC | NC-1, w-1) ⋅ PR(<w, f>first | NC, NC-1)

• Generating all but the first word:

• Pr(<w, f> | <w, f>-1, NC)

• Generating the final word (+end+ is a special word

allowing any word to be the final word in its class):

• Pr(<+end+, other> | <w, f>final | NC)

4/23/2013

8

Formal Model

• It would be useless to have the first word of a new

name-class be generated on the +end+ word of a

previous class.

• This is overcome by conditioning the new class on

the last real word in the previous class.

• It’s still allowed to be +end+ if the previous class is

START-OF-SENTENCE. Otherwise it’s the last

observed word.

Dealing with Unknown Words

• Ideally, the training data would contain every instance that is observed in
the data. This, unfortunately, is rarely the case.

• All unknown words are mapped to the token _UNK_.

• Some training data is withheld in order to train an unknown word model.

• This wins the authors an idea of how often _UNK_ appears in their training data.

• 50% of data is held, and an unknown word model is trained on that set (the
vocabulary was built on the first 50%).

• The counts in that model are stored in a data file.

• Then the other 50% is held out, and the bigram counts of this file are
concatenated with the counts in the first unknown training file.

• This allows the likelihood of unknown data to be calculated using all of
the data.

Back-off Strategy

• Whether a bigram model contains an unknown word or
not, it’s possible that a given bigram may still be
unknown (never seen in the training data).

• The model gives a weight to the likelihood that a back-off
is necessary.

• A back up model is built to decrease specificity of a
probability when necessary.

• Pr(NC | NC-1, w-1)

• Pr(NC | NC-1)

• Pr(NC)

• 1 / number of name-classes

Results

• Slightly worse performance than rule based NER on
mixed case data.

• The performance is close enough that the learning approach
is likely still more useful, ultimately.

• Performance on the Spanish data was worse than the
English data.

• Out performed all previous approaches when mixed case
data was not available.

• Required no labor to handle upper case or speech format.

• Only required a few machine cycles to convert mixed case
training data to other forms, and retrain.

4/23/2013

9

Conclusions

• None of the formalisms in this paper were new. But

applying them to the NER task, as well as the model

itself was novel.

• This paper produced an efficient learning algorithm

that is largely language independent, and that

performs near human levels.

• To the authors knowledge, this model produced a

higher f-measure than any other learned NE system

at the time.

Our Project

• Currently, the SHARP grant uses an NER system to

pre-annotate clinical records.

• It’s not very good.

• James is going to make a better one.

• I will analyze the data output of his system and

identify patterns in the errors. He’ll use this to

improve the system.

