

Chart[0]							
SO	$\gamma \rightarrow \bullet S$	[0,0]	Dummy start state				
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor				
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor				
S3	$S \rightarrow \bullet VP$	[0,0]	Predictor				
S4	$NP \rightarrow \bullet Pronoun$	[0,0]	Predictor				
S5	$NP \rightarrow \bullet Proper-Noun$	[0,0]	Predictor				
S6	$NP \rightarrow \bullet Det Nominal$	[0,0]	Predictor				
S7	$VP \rightarrow \bullet Verb$	[0,0]	Predictor				
S8	$VP \rightarrow \bullet Verb NP$	[0,0]	Predictor				
S9	$VP \rightarrow \bullet Verb NP PP$	[0,0]	Predictor				
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor				
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor				
Note that given a grammar, these entries are the same for all inputs; they can be pre-loaded.							
3/12/15	Speech and Language Proces	ssing - Jurafsky and Martin	21				

Chart[1]						
S12	$Verb \rightarrow book \bullet$	[0,1]	Scanner			
S13	$VP \rightarrow Verb \bullet$	[0,1]	Completer			
S14	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer			
S15	$VP \rightarrow Verb \bullet NP PP$	[0,1]	Completer			
S16	$VP \rightarrow Verb \bullet PP$	[0,1]	Completer			
S17	$S \rightarrow VP \bullet$	[0,1]	Completer			
S18	$VP \rightarrow VP \bullet PP$	[0,1]	Completer			
S19	$NP \rightarrow \bullet Pronoun$	[1,1]	Predictor			
S20	$NP \rightarrow \bullet Proper-Noun$	[1,1]	Predictor			
S21	$NP \rightarrow \bullet Det Nominal$	[1,1]	Predictor			
S22	$PP \rightarrow \bullet Prep NP$	[1,1]	Predictor			

-	Charts[2]	and [3	3]
\$23	$Det \rightarrow that \bullet$	[1,2]	Scanner
524 S25	$NP \rightarrow Del \bullet Nominal$ Nominal $\rightarrow \bullet Noun$	[1,2]	Predictor
S26	Nominal $\rightarrow \bullet$ Nominal Noun	[2,2]	Predictor
S27	Nominal $\rightarrow \bullet$ Nominal PP	[2,2]	Predictor
S28	Noun \rightarrow flight •	[2,3]	Scanner
S29	Nominal \rightarrow Noun \bullet	[2,3]	Completer
S30	NP ightarrow Det Nominal ullet	[1,3]	Completer
S31	Nominal \rightarrow Nominal \bullet Noun	[2,3]	Completer
S32	Nominal \rightarrow Nominal \bullet PP	[2,3]	Completer
S33	$VP \rightarrow Verb NP \bullet$	[0,3]	Completer
S34	$VP \rightarrow Verb NP \bullet PP$	[0,3]	Completer
S35	$PP \rightarrow \bullet Prep NP$	[3,3]	Predictor
S36	$S \rightarrow VP \bullet$	[0,3]	Completer
S37	$VP \rightarrow VP \bullet PP$	[0,3]	Completer
3/12/15	Speech and Language Processing -	Jurafsky and Martin	23

Efficiency

- For such a simple example, there seems to be a lot of useless stuff in there.
- Why?

3/12/15

It's predicting things that aren't consistent with the input
That's the flipside to the CKY problem.

Speech and Language Processing - Jurafsky and Martin

- Probably necessary for deep semantic analysis of texts (as we'll see in a couple of weeks).
- Probably not practical for many applications (given typical resources)
 - O(n^3) for straight parsing
 - O(n^5) for probabilistic versions
 - Too slow for applications that need to process texts in real time (search engines)
 - Or that need to deal with large volumes of new material over short periods of time

Speech and Language Processing - Jurafsky and Martin

3/12/15

Two Alternatives

Partial parsing

3/12/15

- Approximate phrase-structure parsing with finite-state and statistical approaches
- Dependency parsing
 - Change the underlying grammar formalism
- Both of these approaches give up something (syntactic structure) in return for more robust and efficient parsing

Speech and Language Processing - Jurafsky and Martin

3/12/15

Different encodings

 Voting between multiple data representations for text chunking Hong Shen, Anoop Sarkar, In Canadian AAI, 2005

Added S for Singleton tag, increase from 94.22 to 95.23 F1 score on base NP's.

Speech and Language Processing - Jurafsky and Martin

3/12/15

Example

- Suppose we were looking for PP chunks
- If the system simply said O all the time it would do pretty well on a per-label basis since most words reside outside any PP.

Precision/Recall/F

- Precision:
 - The fraction of chunks the system returned that were right
 - "Right" means the boundaries and the label are correct given some labeled test set.
- Recall:
 - The fraction of the chunks that system got from those that it should have gotten.
- F: Simple harmonic mean of those two numbers.

Speech and Language Processing - Jurafsky and Martin

13