
1

Natural Language

Processing

Lecture 16, 17, 18.1—3/7/2015 –

3/12/2015
Martha Palmer

3/12/15 Speech and Language Processing - Jurafsky and Martin 2

Today

!  Review CKY
!  Earley
!  Partial parsing

!  Finite-state methods
!  Chunking

! Sequence labeling methods

3/12/15 Speech and Language Processing - Jurafsky and Martin 3

CKY Algorithm

Looping over the columns

Filling the bottom cell

Filling row i in column j

Looping over the possible split locations
between i and j.

Check the grammar for rules that
link the constituents in [i,k] with
those in [k,j]. For each rule
found store the LHS of the rule in
cell [i,j].

3/12/15 Speech and Language Processing - Jurafsky and Martin 4

Example

2

3/12/15 Speech and Language Processing - Jurafsky and Martin 5

Example

Filling column 5

3/12/15 Speech and Language Processing - Jurafsky and Martin 6

Example

3/12/15 Speech and Language Processing - Jurafsky and Martin 7

Example

3/12/15 Speech and Language Processing - Jurafsky and Martin 8

Example

3

3/12/15 Speech and Language Processing - Jurafsky and Martin 9

Example

3/12/15 Speech and Language Processing - Jurafsky and Martin 10

Note

!  An alternative is to fill a
diagonal at a time.
!  That still satisfies our

requirement that the component
parts of each constituent/cell will
already be available when it is
filled in.

3/12/15 Speech and Language Processing - Jurafsky and Martin 11

CKY Notes

!  Since it’s bottom up, CKY populates the
table with a lot of phantom constituents.
!  Segments that by themselves are constituents

but cannot really occur in the context in which
they are being suggested.

!  To avoid this we can switch to a top-down
control strategy

! Or we can add some kind of filtering that
blocks constituents where they can not
happen in a final analysis.

3/12/15 Speech and Language Processing - Jurafsky and Martin 12

Earley Parsing

!  Allows arbitrary CFGs
!  Top-down control
!  Fills a table in a single sweep over the

input
!  Table is length N+1; N is number of words
!  Table entries represent

! Completed constituents and their locations
!  In-progress constituents
! Predicted constituents

4

3/12/15 Speech and Language Processing - Jurafsky and Martin 13

States

!  The table-entries are called states and are
represented with dotted-rules.

S → · VP A VP is predicted

NP → Det · Nominal An NP is in progress

VP → V NP · A VP has been found

3/12/15 Speech and Language Processing - Jurafsky and Martin 14

States/Locations

!  S → ● VP [0,0]

!  NP → Det ● Nominal
[1,2]

!  VP → V NP ● [0,3]

!  A VP is predicted at the start
of the sentence

!  An NP is in progress; the Det

goes from 1 to 2

!  A VP has been found starting

at 0 and ending at 3

3/12/15 Speech and Language Processing - Jurafsky and Martin 15

Earley

!  As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

!  In this case, there should be an S state in
the final column that spans from 0 to N
and is complete. That is,
!  S → α ● [0,N]

!  If that’s the case you’re done.

3/12/15 Speech and Language Processing - Jurafsky and Martin 16

Earley

!  So sweep through the table from 0 to N…
!  New predicted states are created by starting

top-down from S
!  New incomplete states are created by

advancing existing states as new constituents
are discovered

!  New complete states are created in the same
way.

5

3/12/15 Speech and Language Processing - Jurafsky and Martin 17

Earley

!  More specifically…
1. Predict all the states you can upfront
2.  Read a word

1.  Extend states based on matches
2.  Generate new predictions
3.  Go to step 2

3.  When you’re out of words, look at the chart
to see if you have a winner

3/12/15 Speech and Language Processing - Jurafsky and Martin 18

Core Earley Code

3/12/15 Speech and Language Processing - Jurafsky and Martin 19

Earley Code

3/12/15 Speech and Language Processing - Jurafsky and Martin 20

Example

!  Book that flight
!  We should find… an S from 0 to 3 that is a

completed state…

6

3/12/15 Speech and Language Processing - Jurafsky and Martin 21

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

3/12/15 Speech and Language Processing - Jurafsky and Martin 22

Chart[1]

3/12/15 Speech and Language Processing - Jurafsky and Martin 23

Charts[2] and [3]

3/12/15 Speech and Language Processing - Jurafsky and Martin 24

Efficiency

!  For such a simple example, there seems to
be a lot of useless stuff in there.

!  Why?

•  It’s predicting things that aren’t consistent
with the input
• That’s the flipside to the CKY problem.

7

3/12/15 Speech and Language Processing - Jurafsky and Martin 25

Details

!  As with CKY that isn’t a parser until we
add the backpointers so that each state
knows where it came from.

3/12/15 Speech and Language Processing - Jurafsky and Martin 26

Back to Ambiguity

!  Did we solve it?

3/12/15 Speech and Language Processing - Jurafsky and Martin 27

Ambiguity

!  No…
!  Both CKY and Earley will result in multiple S

structures for the [0,N] table entry.
!  They both efficiently store the sub-parts that

are shared between multiple parses.
!  And they obviously avoid re-deriving those

sub-parts.
!  But neither can tell us which one is right.

3/12/15 Speech and Language Processing - Jurafsky and Martin 28

Ambiguity

!  In most cases, humans don’t notice
incidental ambiguity (lexical or syntactic).
It is resolved on the fly and never
noticed.

!  We’ll try to model that with probabilities.

8

3/12/15 Speech and Language Processing - Jurafsky and Martin 29

Full Syntactic Parsing

!  Probably necessary for deep semantic
analysis of texts (as we’ll see in a couple
of weeks).

!  Probably not practical for many
applications (given typical resources)
!  O(n^3) for straight parsing
!  O(n^5) for probabilistic versions
!  Too slow for applications that need to process texts in real time

(search engines)
!  Or that need to deal with large volumes of new material over

short periods of time

Two Alternatives

!  Partial parsing
!  Approximate phrase-structure parsing with

finite-state and statistical approaches

!  Dependency parsing
!  Change the underlying grammar formalism

!  Both of these approaches give up
something (syntactic structure) in return
for more robust and efficient parsing

3/12/15 Speech and Language Processing - Jurafsky and Martin 30

3/12/15 Speech and Language Processing - Jurafsky and Martin 31

Partial Parsing

!  For many applications you don’t really
need a full-blown syntactic parse. You just
need a good idea of where the base
syntactic units are.
! Often referred to as chunks.

!  For example, if you’re interested in
locating all the people, places and
organizations in an English text it can be
useful to know where all the NPs are
!  Because that’s where you’ll find the people,

places and things

3/12/15 Speech and Language Processing - Jurafsky and Martin 32

Examples

!  The first two are examples of full partial parsing or chunking.
All of the elements in the text are part of a chunk. And the
chunks are non-overlapping.

!  Note how the second example has no hierarchical structure.
!  The last example illustrates base-NP chunking. Ignore

anything that isn’t in the kind of chunk you’re looking for.

9

3/12/15 Speech and Language Processing - Jurafsky and Martin 33

Rule-Based Partial Parsing
!  Restrict the form of rules to exclude recursion
!  Group and order the rules so that the RHS of the

rules can refer to non-terminals introduced in
earlier transducers, but not later ones.

!  Combine the rules in a group in the same way
we did with the rules for spelling changes.

!  Combine the groups into a cascade…
!  Then compose, determinize and minimize the

whole thing (optional).

3/12/15 Speech and Language Processing - Jurafsky and Martin 34

Typical Architecture

!  Phase 1: Part of speech tags
!  Phase 2: Base syntactic phrases
!  Phase 3: Larger verb and noun groups
!  Phase 4: Sentential level rules

3/12/15 Speech and Language Processing - Jurafsky and Martin 35

Partial Parsing

!  No direct or indirect
recursion allowed in
these rules.

!  That is, you can’t
directly or indirectly
reference the LHS of
the rule on the RHS.

3/12/15 Speech and Language Processing - Jurafsky and Martin 36

Cascaded Transducers

10

3/12/15 Speech and Language Processing - Jurafsky and Martin 37

Partial Parsing

!  This cascaded approach can be used to
find the sequence of flat chunks you’re
interested in.

!  Or it can be used to approximate the kind
of hierarchical trees you get from full
parsing with a CFG.

The Other Way

!  An alternative approach is to use statistical
machine learning methods to do partial
parsing
!  Analogous to the same situation with part-of-

speech tagging
! Rules vs. HMMs

3/12/15 Speech and Language Processing - Jurafsky and Martin 38

3/12/15 Speech and Language Processing - Jurafsky and Martin 39

Statistical Sequence Labeling

!  As with POS tagging, we can use rules to
do partial parsing or we can train systems
to do it for us. To do that we need training
data and a way to view the problem as a
classification problem

!  Training data

! Hand tag a bunch of data (as with POS tagging)
! Or even better, extract partial parse bracketing

information from a treebank.

3/12/15 Speech and Language Processing - Jurafsky and Martin 40

Encoding

!  With the right encoding you can turn any
labeled bracketing task into a tagging
task. And then proceed exactly as we did
with POS Tagging.

!  We’ll use what’s called IOB labeling to do
this
!  I -> Inside
! O -> Outside
!  B -> Begin

11

3/12/15 Speech and Language Processing - Jurafsky and Martin 41

IOB encoding

!  This example shows the encoding for just base-
NPs. There are 3 tags in this scheme.

!  This example shows full coverage. In this scheme
there are 2*N+1 kinds of tags. Where N is the
number of constituents in your set.

Different encodings

!  Voting between multiple data
representations for text chunking
Hong Shen, Anoop Sarkar, In Canadian AAI,
2005

Added S for Singleton tag, increase from 94.22
to 95.23 F1 score on base NP’s.

3/12/15 Speech and Language Processing - Jurafsky and Martin 42

3/12/15 Speech and Language Processing - Jurafsky and Martin 43

Methods

!  Argmax P(Tags|Words)

!  HMMs
!  Discriminative Sequence Classification

! Using any kind of standard ML-based classifier.

3/12/15 Speech and Language Processing - Jurafsky and Martin 44

HMM Tagging
!  Same as we did with POS tagging

!  Argmax P(T|W) = P(W|T)P(T)
!  The tags are the hidden states

!  Works ok, but has one significant shortcoming
!  The typical kinds of things that we might think would

be useful in this task aren’t easily squeezed into the
HMM model

!  We’d like to be able to make arbitrary features
available for the statistical inference being made.

!  For that we’ll turn to classifiers created using
classical machine learning techniques

12

3/12/15 Speech and Language Processing - Jurafsky and Martin 45

Supervised Classification

!  Training a system to take an object
represented as a set of features and apply
a label to that object.

!  Methods typically include

!  Naïve Bayes
!  Decision Trees
!  Logistic regression (maximum entropy)
!  Support Vector Machines
! …

3/12/15 Speech and Language Processing - Jurafsky and Martin 46

From Classification to
Sequence Processing

!  Applying this to tagging…
!  The object to be tagged is a word in the

sequence
!  The features are

!  features of the word,
!  features of its immediate neighbors,
!  and features derived from the entire context

!  Sequential tagging means sweeping a
classifier across the input assigning tags to
words as you proceed.

3/12/15 Speech and Language Processing - Jurafsky and Martin 47

Typical Features
!  Typical setup involves

!  A small sliding window around the object
being tagged

!  Features extracted from the window
! Current word token
! Previous/next N word tokens
! Current word POS
! Previous/next POS
! Previous N chunk labels
! Capitalization information
!  ...

3/12/15 Speech and Language Processing - Jurafsky and Martin 48

Statistical Sequence
Labeling

13

3/12/15 Speech and Language Processing - Jurafsky and Martin 49

Evaluation

!  Suppose you employ this IOB scheme.
What’s the best way to measure
performance.

!  Probably not the per-tag accuracy we used
for POS tagging.
! Why?

• It’s not measuring what we care about
• We need a metric that looks at the chunks

not the tags

3/12/15 Speech and Language Processing - Jurafsky and Martin 50

Example

!  Suppose we were looking for PP chunks
for some reason.

!  If the system simply said O all the time it
would do pretty well on a per-label basis
since most words reside outside any PP.

3/12/15 Speech and Language Processing - Jurafsky and Martin 51

Precision/Recall/F

!  Precision:
!  The fraction of chunks the system returned

that were right
!  “Right” means the boundaries and the label are

correct given some labeled test set.

!  Recall:
!  The fraction of the chunks that system got

from those that it should have gotten.

!  F: Simple harmonic mean of those two
numbers.

