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Today 

!  Review CKY 
!  Earley 
!  Partial parsing 

!  Finite-state methods 
!  Chunking 

! Sequence labeling methods 
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CKY Algorithm 

Looping over the columns 

Filling the bottom cell 

Filling row i in column j 

Looping over the possible split locations 
between i and j. 

Check the grammar for rules that 
link the constituents in [i,k] with 
those in [k,j]. For each rule 
found store the LHS of the rule in 
cell [i,j].  
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Example 
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Example 

Filling column 5 
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Example 

3/12/15                                          Speech and Language Processing - Jurafsky and Martin        7 

Example 
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Example 
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Example 
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Note 

!  An alternative is to fill a 
diagonal at a time. 
!  That still satisfies our 

requirement that the component 
parts of each constituent/cell will 
already be available when it is 
filled in. 
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CKY Notes 

!  Since it’s bottom up, CKY populates the 
table with a lot of phantom constituents. 
!  Segments that by themselves are constituents 

but cannot really occur in the context in which 
they are being suggested. 

!  To avoid this we can switch to a top-down 
control strategy 

! Or we can add some kind of filtering that 
blocks constituents where they can not 
happen in a final analysis. 
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Earley Parsing 

!  Allows arbitrary CFGs 
!  Top-down control 
!  Fills a table in a single sweep over the 

input 
!  Table is length N+1; N is number of words 
!  Table entries represent 

! Completed constituents and their locations 
!  In-progress constituents 
! Predicted constituents 
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States 

!  The table-entries are called states and are 
represented with dotted-rules. 

S → · VP    A VP is predicted 

NP → Det · Nominal  An NP is in progress 

VP → V NP ·    A VP has been found 
 

3/12/15                                          Speech and Language Processing - Jurafsky and Martin        14 

States/Locations 

!  S → ● VP [0,0] 

 

!  NP → Det ● Nominal 
[1,2] 

 

!  VP → V NP  ●  [0,3] 

!  A VP is predicted at the start 
of the sentence 

 
 
!  An NP is in progress; the Det 

goes from 1 to 2 
 
 
!  A VP has been found starting 

at 0 and ending at 3 
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Earley 

!  As with most dynamic programming 
approaches, the answer is found by 
looking in the table in the right place. 

!  In this case, there should be an S state in 
the final column that spans from 0 to N 
and is complete.  That is, 
!  S → α ● [0,N] 

!  If that’s the case you’re done. 
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Earley 

!  So sweep through the table from 0 to N… 
!  New predicted states are created by starting 

top-down from S 
!  New incomplete states are created by 

advancing existing states as new constituents 
are discovered 

!  New complete states are created in the same 
way.  
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Earley 

!  More specifically… 
1. Predict all the states you can upfront 
2.  Read a word 

1.  Extend states based on matches 
2.  Generate new predictions 
3.  Go to step 2 

3.  When you’re out of words, look at the chart 
to see if you have a winner 
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Core Earley Code 
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Earley Code 
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Example 

!  Book that flight 
!  We should find… an S from 0 to 3 that is a 

completed state… 
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Chart[0] 

Note that given a grammar, these entries are 
the same for all inputs; they can be pre-loaded. 

3/12/15                                          Speech and Language Processing - Jurafsky and Martin        22 

Chart[1] 
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Charts[2] and [3] 
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Efficiency 

!  For such a simple example, there seems to 
be a lot of useless stuff in there. 

!  Why? 

•  It’s predicting things that aren’t consistent 
with the input  
• That’s the flipside to the CKY problem. 
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Details 

!  As with CKY that isn’t a parser until we 
add the backpointers so that each state 
knows where it came from. 
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Back to Ambiguity 

!  Did we solve it? 
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Ambiguity 

!  No… 
!  Both CKY and Earley will result in multiple S 

structures for the [0,N] table entry. 
!  They both efficiently store the sub-parts that 

are shared between multiple parses. 
!  And they obviously avoid re-deriving those 

sub-parts. 
!  But neither can tell us which one is right. 
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Ambiguity 

!  In most cases, humans don’t notice 
incidental ambiguity (lexical or syntactic). 
It is resolved on the fly and never 
noticed. 

!  We’ll try to model that with probabilities. 
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Full Syntactic Parsing 

!  Probably necessary for deep semantic 
analysis of texts (as we’ll see in a couple 
of weeks).  

!  Probably not practical for many 
applications (given typical resources) 
!  O(n^3) for straight parsing 
!  O(n^5) for probabilistic versions 
!  Too slow for applications that need to process texts in real time 

(search engines) 
!  Or that need to deal with large volumes of new material over 

short periods of time 

Two Alternatives   

!  Partial parsing 
!  Approximate phrase-structure parsing with 

finite-state and statistical approaches 

!  Dependency parsing 
!  Change the underlying grammar formalism 

!  Both of these approaches give up 
something (syntactic structure) in return 
for more robust and efficient parsing 

3/12/15                                          Speech and Language Processing - Jurafsky and Martin        30 

3/12/15                                          Speech and Language Processing - Jurafsky and Martin        31 

Partial Parsing 

!  For many applications you don’t really 
need a full-blown syntactic parse. You just 
need a good idea of where the base 
syntactic units are. 
! Often referred to as chunks. 

!  For example, if you’re interested in 
locating all the people, places and 
organizations in an English text it can be 
useful to know where all the NPs are 
!  Because that’s where you’ll find the people, 

places and things 
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Examples 

!  The first two are examples of full partial parsing or chunking. 
All of the elements in the text are part of a chunk. And the 
chunks are non-overlapping. 

!  Note how the second example has no hierarchical structure. 
!  The last example illustrates base-NP chunking. Ignore 

anything that isn’t in the kind of chunk you’re looking for. 
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Rule-Based Partial Parsing 
!  Restrict the form of rules to exclude recursion 
!  Group and order the rules so that the RHS of the 

rules can refer to non-terminals introduced in 
earlier transducers, but not later ones. 

!  Combine the rules in a group in the same way 
we did with the rules for spelling changes. 

!  Combine the groups into a cascade… 
!  Then compose, determinize and minimize the 

whole thing (optional). 
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Typical Architecture 

!  Phase 1:  Part of speech tags 
!  Phase 2: Base syntactic phrases 
!  Phase 3: Larger verb and noun groups 
!  Phase 4: Sentential level rules 
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Partial Parsing 

!  No direct or indirect 
recursion allowed in 
these rules. 

!  That is, you can’t 
directly or indirectly 
reference the LHS of 
the rule on the RHS. 
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Cascaded Transducers 
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Partial Parsing 

!  This cascaded approach can be used to 
find the sequence of flat chunks you’re 
interested in. 

!  Or it can be used to approximate the kind 
of hierarchical trees you get from full 
parsing with a CFG. 

The Other Way 

!  An alternative approach is to use statistical 
machine learning methods to do partial 
parsing 
!  Analogous to the same situation with part-of-

speech tagging 
! Rules vs. HMMs 
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Statistical Sequence Labeling 

!  As with POS tagging, we can use rules to 
do partial parsing or we can train systems 
to do it for us. To do that we need training 
data and a way to view the problem as a 
classification problem 

 
!  Training data 

! Hand tag a bunch of data (as with POS tagging) 
! Or even better, extract partial parse bracketing 

information from a treebank. 
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Encoding 

!  With the right encoding you can turn any 
labeled bracketing task into a tagging 
task. And then proceed exactly as we did 
with POS Tagging. 

!  We’ll use what’s called IOB labeling to do 
this 
!  I -> Inside 
! O -> Outside 
!  B -> Begin 
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IOB encoding 

!  This example shows the encoding for just base-
NPs. There are 3 tags in this scheme. 

 

!  This example shows full coverage. In this scheme 
there are 2*N+1 kinds of tags. Where N is the 
number of constituents in your set.  

Different encodings 

!  Voting between multiple data 
representations for text chunking 
Hong Shen, Anoop Sarkar, In Canadian AAI, 
2005 
 
Added S for Singleton tag, increase from 94.22 
to 95.23 F1 score on base NP’s. 
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Methods 

!  Argmax P(Tags|Words) 
 

!  HMMs 
!  Discriminative Sequence Classification 

! Using any kind of standard ML-based classifier. 
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HMM Tagging 
!  Same as we did with POS tagging 

!  Argmax P(T|W) = P(W|T)P(T) 
!  The tags are the hidden states 

!  Works ok, but has one significant shortcoming 
!  The typical kinds of things that we might think would 

be useful in this task aren’t easily squeezed into the 
HMM model 

!  We’d like to be able to make arbitrary features 
available for the statistical inference being made. 

!  For that we’ll turn to classifiers created using 
classical machine learning techniques  
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Supervised Classification 

!  Training a system to take an object 
represented as a set of features and apply 
a label to that object. 

 
!  Methods typically include 

!  Naïve Bayes 
!  Decision Trees 
!  Logistic regression (maximum entropy) 
!  Support Vector Machines 
! … 
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From Classification to 
Sequence Processing 

!  Applying this to tagging… 
!  The object to be tagged is a word in the 

sequence 
!  The features are  

!  features of the word,  
!  features of its immediate neighbors, 
!   and features derived from the entire context 

!  Sequential tagging means sweeping a 
classifier across the input assigning tags to 
words as you proceed. 
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Typical Features 
!  Typical setup involves 

!  A small sliding window around the object 
being tagged 

!  Features extracted from the window 
! Current word token 
! Previous/next N word tokens 
! Current word POS 
! Previous/next POS 
! Previous N chunk labels 
! Capitalization information 
!  ... 
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Statistical Sequence 
Labeling 
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Evaluation 

!  Suppose you employ this IOB  scheme. 
What’s the best way to measure 
performance. 

!  Probably not the per-tag accuracy we used 
for POS tagging. 
! Why? 

• It’s not measuring what we care about 
• We need a metric that looks at the chunks 

not the tags 
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Example 

!  Suppose we were looking for PP chunks 
for some reason. 

!  If the system simply said O all the time it 
would do pretty well on a per-label basis 
since most words reside outside any PP. 
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Precision/Recall/F 

!  Precision: 
!  The fraction of chunks the system returned 

that were right 
!  “Right” means the boundaries and the label are 

correct given some labeled test set. 

!  Recall: 
!  The fraction of the chunks that system got 

from those that it should have gotten. 

!  F: Simple harmonic mean of those two 
numbers.  


