

Natural Language

Processing

Lecture 15—3/5/2015

Martha Palmer

3/5/15 Speech and Language Processing - Jurafsky and Martin 2

Today

!  Review CKY
!  Earley
!  Partial parsing

!  Finite-state methods
!  Chunking

! Sequence labeling methods

3/5/15 Speech and Language Processing - Jurafsky and Martin 3

CKY Algorithm

Looping over the columns

Filling the bottom cell

Filling row i in column j

Looping over the possible split locations
between i and j.

Check the grammar for rules that
link the constituents in [i,k] with
those in [k,j]. For each rule
found store the LHS of the rule in
cell [i,j].

3/5/15 Speech and Language Processing - Jurafsky and Martin 4

Example

3/5/15 Speech and Language Processing - Jurafsky and Martin 5

Example

Filling column 5

3/5/15 Speech and Language Processing - Jurafsky and Martin 6

Example

3/5/15 Speech and Language Processing - Jurafsky and Martin 7

Example

3/5/15 Speech and Language Processing - Jurafsky and Martin 8

Example

3/5/15 Speech and Language Processing - Jurafsky and Martin 9

Example

3/5/15 Speech and Language Processing - Jurafsky and Martin 10

Note

!  An alternative is to fill a
diagonal at a time.
!  That still satisfies our

requirement that the component
parts of each constituent/cell will
already be available when it is
filled in.

3/5/15 Speech and Language Processing - Jurafsky and Martin 11

CKY Notes

!  Since it’s bottom up, CKY populates the
table with a lot of phantom constituents.
!  Segments that by themselves are constituents

but cannot really occur in the context in which
they are being suggested.

!  To avoid this we can switch to a top-down
control strategy

! Or we can add some kind of filtering that
blocks constituents where they can not
happen in a final analysis.

3/5/15 Speech and Language Processing - Jurafsky and Martin 12

Earley Parsing

!  Allows arbitrary CFGs
!  Top-down control
!  Fills a table in a single sweep over the

input
!  Table is length N+1; N is number of words
!  Table entries represent

! Completed constituents and their locations
!  In-progress constituents
! Predicted constituents

3/5/15 Speech and Language Processing - Jurafsky and Martin 13

States

!  The table-entries are called states and are
represented with dotted-rules.

S → · VP A VP is predicted

NP → Det · Nominal An NP is in progress

VP → V NP · A VP has been found

3/5/15 Speech and Language Processing - Jurafsky and Martin 14

States/Locations

!  S → ● VP [0,0]

!  NP → Det ● Nominal
[1,2]

!  VP → V NP ● [0,3]

!  A VP is predicted at the start
of the sentence

!  An NP is in progress; the Det

goes from 1 to 2

!  A VP has been found starting

at 0 and ending at 3

3/5/15 Speech and Language Processing - Jurafsky and Martin 15

Earley

!  As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

!  In this case, there should be an S state in
the final column that spans from 0 to N
and is complete. That is,
!  S → α ● [0,N]

!  If that’s the case you’re done.

3/5/15 Speech and Language Processing - Jurafsky and Martin 16

Earley

!  So sweep through the table from 0 to N…
!  New predicted states are created by starting

top-down from S
!  New incomplete states are created by

advancing existing states as new constituents
are discovered

!  New complete states are created in the same
way.

3/5/15 Speech and Language Processing - Jurafsky and Martin 17

Earley

!  More specifically…
1. Predict all the states you can upfront
2.  Read a word

1.  Extend states based on matches
2.  Generate new predictions
3.  Go to step 2

3.  When you’re out of words, look at the chart
to see if you have a winner

3/5/15 Speech and Language Processing - Jurafsky and Martin 18

Core Earley Code

3/5/15 Speech and Language Processing - Jurafsky and Martin 19

Earley Code

3/5/15 Speech and Language Processing - Jurafsky and Martin 20

Example

!  Book that flight
!  We should find… an S from 0 to 3 that is a

completed state…

3/5/15 Speech and Language Processing - Jurafsky and Martin 21

Chart[0]

Note that given a grammar, these entries are
the same for all inputs; they can be pre-loaded.

3/5/15 Speech and Language Processing - Jurafsky and Martin 22

Chart[1]

3/5/15 Speech and Language Processing - Jurafsky and Martin 23

Charts[2] and [3]

3/5/15 Speech and Language Processing - Jurafsky and Martin 24

Efficiency

!  For such a simple example, there seems to
be a lot of useless stuff in there.

!  Why?

•  It’s predicting things that aren’t consistent
with the input
• That’s the flipside to the CKY problem.

3/5/15 Speech and Language Processing - Jurafsky and Martin 25

Details

!  As with CKY that isn’t a parser until we
add the backpointers so that each state
knows where it came from.

