Natural Language Processing

Lecture 14—3/2/2015 Martha Palmer

Today

Start on Parsing

- Top-down vs. Bottom-up
- CKY

Top-down vs. Bottom-up

- Helps with POS ambiguities – only consider relevant POS
- Rebuilds the same structure repeatedly
- Spends a lot of time on impossible parses (trees that are not consistent with any of the words)

- Has to consider every POS
- Builds each structure once
- Spends a lot of time on useless structures (trees that make no sense globally)

What would be better?

Dynamic Programming

- DP search methods fill tables with partial results and thereby
 - Avoid doing avoidable repeated work
 - Solve exponential problems in polynomial time
 - Efficiently store ambiguous structures with shared subparts.
- We'll cover two approaches that roughly correspond to top-down and bottom-up approaches.
 - CKY
 - Earley

CKY Parsing

- First we'll limit our grammar to epsilonfree, binary rules
- Consider the rule $A \rightarrow BC$
 - If there is an A somewhere in the input generated by this rule then there must be a B followed by a C in the input.
 - If the A spans from i to j in the input then there must be some k st. i<k<j</p>
 - In other words, the B splits from the C someplace after the i and before the j.

Grammar rules in CNF

NP	\rightarrow	Pronoun
NP	\rightarrow	Proper-Noun
NP	\rightarrow	Det Nominal
Nor	ninc	$al \rightarrow Noun$
Nor	nina	$al \rightarrow Nominal Noun$
Nor	nine	$al \rightarrow Nominal PP$
VP	\rightarrow	Verb
VP	\rightarrow	Verb NP
VP	\rightarrow	Verb NP PP
VP	\rightarrow	Verb PP

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

 $S \rightarrow XI VP$ $XI \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ $S \rightarrow Verb NP$ $S \rightarrow X2 PP$ $S \rightarrow Verb PP$ $S \rightarrow VPPP$ $NP \rightarrow I \mid she \mid me$ $NP \rightarrow TWA \mid Houston$ $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight | meal | money Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP $VP \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $X2 \rightarrow Verb NP$ $VP \rightarrow Verb PP$

CKY

- Let's build a table so that an A spanning from i to j in the input is placed in cell [i,j] in the table.
 - So a non-terminal spanning an entire string will sit in cell [0, n]
 - Hopefully it will be an S
- Now we know that the parts of the A must go from i to k and from k to j, for some k

CKY

- Meaning that for a rule like A → B C we should look for a B in [i,k] and a C in [k,j].
- In other words, if we think there might be an A spanning i,j in the input... AND
 - $A \rightarrow B C$ is a rule in the grammar THEN
- There must be a B in [i,k] and a C in [k,j] for some k such that i<k<j

What about the B and the C?

CKY

- So to fill the table loop over the cell [i,j] values in some systematic way
 - Then for each cell, loop over the appropriate k values to search for things to add.
 - Add all the derivations that are possible for each [i,j] for each k

Bottom-Up Search

10

CKY Table

Book	the	flight	through	Houston	
S, VP, Verb Nominal, Noun	10 21	S,VP,X2	10 41	S,VP,X2	
[[0,1]	Det	NP	[0,4]	NP	
	[1,2]	[1,3] Nominal, Noun	[1,4]	[1,5] Nominal	
		[2,3]	[2,4] Prep	[2,5] PP	
			[3,4]	[3,5] NP, Proper- Noun	
				[4,5]	

CKY Algorithm

function CKY-PARSE(words, grammar) returns table

for $j \leftarrow$ from 1 to LENGTH(words) do $table[j-1, j] \leftarrow \{A \mid A \rightarrow words[j] \in grammar\}$ for $i \leftarrow$ from j-2 downto 0 do for $k \leftarrow i+1$ to j-1 do $table[i,j] \leftarrow table[i,j] \cup$ $\{A \mid A \rightarrow BC \in grammar, B \in table[i,k], C \in table[k, j]\}$

CKY Algorithm

function CKY-PARSE(*words*, *grammar*) **returns** *table*

$$\begin{array}{ll} \mbox{for } j \leftarrow \mbox{from 1 to LENGTH}(words) \mbox{ do} & \mbox{Looping over the columns} \\ table[j-1,j] \leftarrow \{A \mid A \rightarrow words[j] \in gram \mbox{Filling the bottom cell} \\ \mbox{for } i \leftarrow \mbox{from } j - 2 \mbox{ downto 0 do} & \mbox{Filling row i in column j} \\ \mbox{for } k \leftarrow i + 1 \mbox{ to } j - 1 \mbox{ do} & \mbox{Filling row i in column j} \\ \mbox{table}[i,j] \leftarrow table[i,j] \cup & \mbox{Looping over the possible split locations} \\ \mbox{table}[i,j] \leftarrow table[i,j] \cup & \mbox{looping over the possible split locations} \\ \mbox{between i and j.} \\ \mbox{Check the grammar for rules that} \\ \mbox{link the constituents in [i,k] with} \\ \mbox{to se in [k,j]. For each rule} \\ \mbox{found store the LHS of the rule in} & \mbox{c} \in table[i,k], \\ \mbox{C} \in table[k,j] \\ \end{table} \end{array}$$

- Filling column 5 corresponds to processing word 5, which is *Houston*.
 - So j is 5.
 - So i goes from 3 to 0 (3,2,1,0)

function CKY-PARSE(words, grammar) returns table

for
$$j \leftarrow$$
 from 1 to LENGTH(words) do
 $table[j-1, j] \leftarrow \{A \mid A \rightarrow words[j] \in grammar\}$
for $i \leftarrow$ from $j-2$ downto 0 do
for $k \leftarrow i+1$ to $j-1$ do
 $table[i,j] \leftarrow table[i,j] \cup$
 $\{A \mid A \rightarrow BC \in grammar,$
 $B \in table[i,k],$
 $C \in table[k, j]\}$

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun		S,VP,X2		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det	NP		NP
	[1,2]	[1,3]	[1,4]	[1,5]
		Nominal, Noun		
	_	[2,3]	[2,4]	[2,5]
			Prep 🗲	PP
			[3,4]	[3,5] 🖌
				NP, Proper- Noun
				[4,5]

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun		S,VP,X2		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det	NP		NP
_	[1,2]	[1,3]	[1,4]	[1,5]
		Nominal, ∢ Noun		-Nominal
		[2,3]	[2,4]	[2,5]
			Prep	PP
			[3,4]	[3,5]
				NP, Proper- Noun
				[4,5]

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun		S,VP,X2		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det <	NP		NP
	[1,2]	[1,3]	[1,4]	[15]
		Nominal, Noun		Nominal
		[2,3]	[2,4]	[2,5]
			Prep	PP
			[3,4]	[3,5]
				NP, Proper- Noun
				[4,5]

Grammar rules in CNF

$NP \rightarrow Pronoun$
$NP \rightarrow Proper-Noun$
$NP \rightarrow Det Nominal$
Nominal \rightarrow Noun
Nominal \rightarrow Nominal Noun
Nominal \rightarrow Nominal PP
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$
$VP \rightarrow Verb NP PP$
$VP \rightarrow Verb PP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

 $S \rightarrow XI VP$ $XI \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ $S \rightarrow Verb NP$ $S \rightarrow X2 PP$ $S \rightarrow Verb PP$ $S \rightarrow VPPP$ $NP \rightarrow I \mid she \mid me$ $NP \rightarrow TWA \mid Houston$ $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight | meal | money Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP $VP \rightarrow book \mid include \mid prefer$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $X2 \rightarrow Verb NP$ $VP \rightarrow Verb PP$

Book	the	flight	through	Houston	
S, VP, Verb; Nominal, Noun	<	S, VP, ≺ X2 ≺		- S ₁ ,VP, X2 	
[[0,1]	[0,2] Det	[0,3]	[0,4]		
	[1,2]	[1,3]	[1,4]	[1,5]	
		Nominal, Noun		Nominal	
		[2,3]	[2,4]	[2,5]	
			Prep	'PP'	
			[3,4]	[3,5]	
				NP, Proper- Noun	
				[4,5]	

- Since there's an S in [0,5] we have a valid parse.
- Are we done? Well, we sort of left something out of the algorithm

function CKY-PARSE(words, grammar) returns table

for
$$j \leftarrow \text{from 1}$$
 to LENGTH(words) do
 $table[j-1, j] \leftarrow \{A \mid A \rightarrow words[j] \in grammar\}$
for $i \leftarrow \text{from } j-2$ downto 0 do
for $k \leftarrow i+1$ to $j-1$ do
 $table[i,j] \leftarrow table[i,j] \cup$
 $\{A \mid A \rightarrow BC \in grammar,$
 $B \in table[i,k],$
 $C \in table[k,j]\}$

CKY Notes

- Since it's bottom up, CKY hallucinates a lot of silly constituents.
 - Segments that by themselves are constituents but cannot really occur in the context in which they are being suggested.
 - To avoid this we can switch to a top-down control strategy
 - Or we can add some kind of filtering that blocks constituents where they can not happen in a final analysis.

CKY Notes

- We arranged the loops to fill the table a column at a time, from left to right, bottom to top.
 - This assures us that whenever we're filling a cell, the parts needed to fill it are already in the table (to the left and below)
 - It's somewhat natural in that it processes the input left to right a word at a time
 - Known as online
 - Can you think of an alternative strategy?

Projects

Project Proposals due March 12

 1 page writeup of topic and approach, + citations of selected papers, with 1 partner

- Mohammed & Yasmeen, Arabic SRL & ML
- Michael SRL, how to integrate syntax & semantics, Luc Steels
- Matt NLG, features, STAGES
- Oliver –German parsing, ML, IR
- Garret deep learning for Speech Recognition
- Nelson Speech recognition, Mari Olsen UW, use of NLP?, Nuance

- Melissa & Nima, text and images, automatic captioning
- Kinjal OFFICE
- Harsha nlp for social media, Google multlingual POS tagging and parsing (universal)
- Betty IR, twitter, facebook
- Rick MT, how to scale up
- Megan writing a grammar German,
- Sarah speech, comparing models 3/3/15
 Speech and Language Processing - Jurafsky and Martin

- Keyla speech recognition w/ Garrett
- Ryan vector space models, NYU convolutional neural network, grammar induction
- Audrey w/ Megan temporal realtions
- Allison –NLP for sociolinguistics research
- Ross word prediction
- Megan w/ Audrey bioinformatics

Makeup Exam

March 16, Monday , 12 – 1:15