Phonology and speech applications with weighted automata

Natural Language Processing LING/CSCI 5832

Mans Hulden Dept. of Linguistics <u>mans.hulden@colorado.edu</u>

Feb 19 2014

University of Colorado Boulder

Overview

(I) Recap unweighted finite automata and transducers

(2) Extend to probabilistic weighted automata/transducers

(3) See how these can be used in natural language applications + a brief look at speech applications

RE: anatomy of a FSA

Regular expression

$$L = a b * c$$

Graph representation

С

a

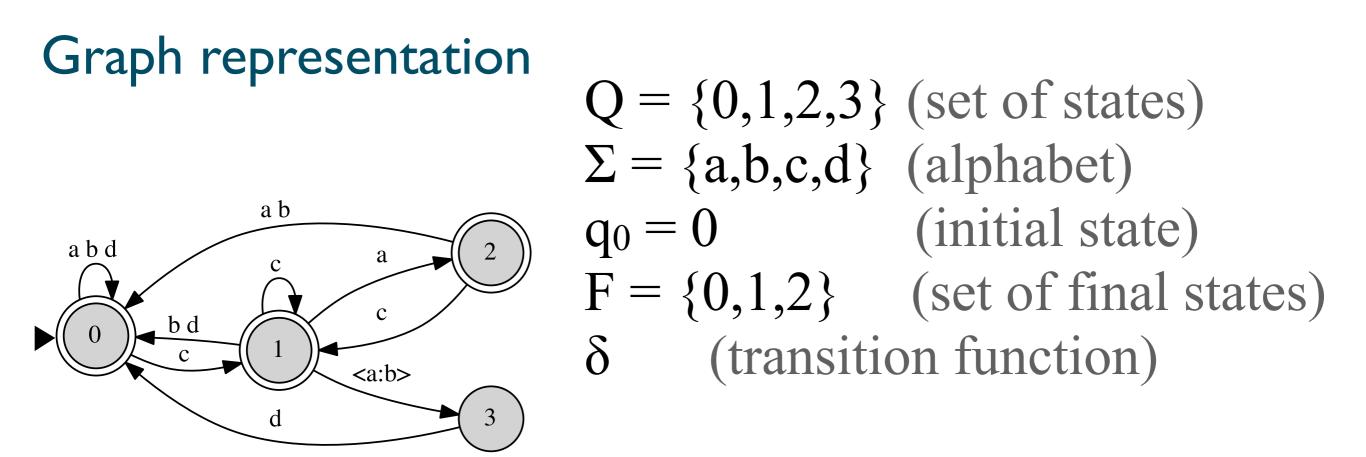
Formal definition

 $\begin{array}{l} Q = \{0,1,2\} \text{ (set of states)} \\ \Sigma = \{a,b,c\} \text{ (alphabet)} \\ q_0 = 0 \text{ (initial state)} \\ F = \{2\} \text{ (set of final states)} \\ \delta(0,a) = 1, \delta(1,b) = 1, \delta(1,c) = 2 \\ \text{ (transition function)} \end{array}$

defines a set of strings

RE: anatomy of an FST

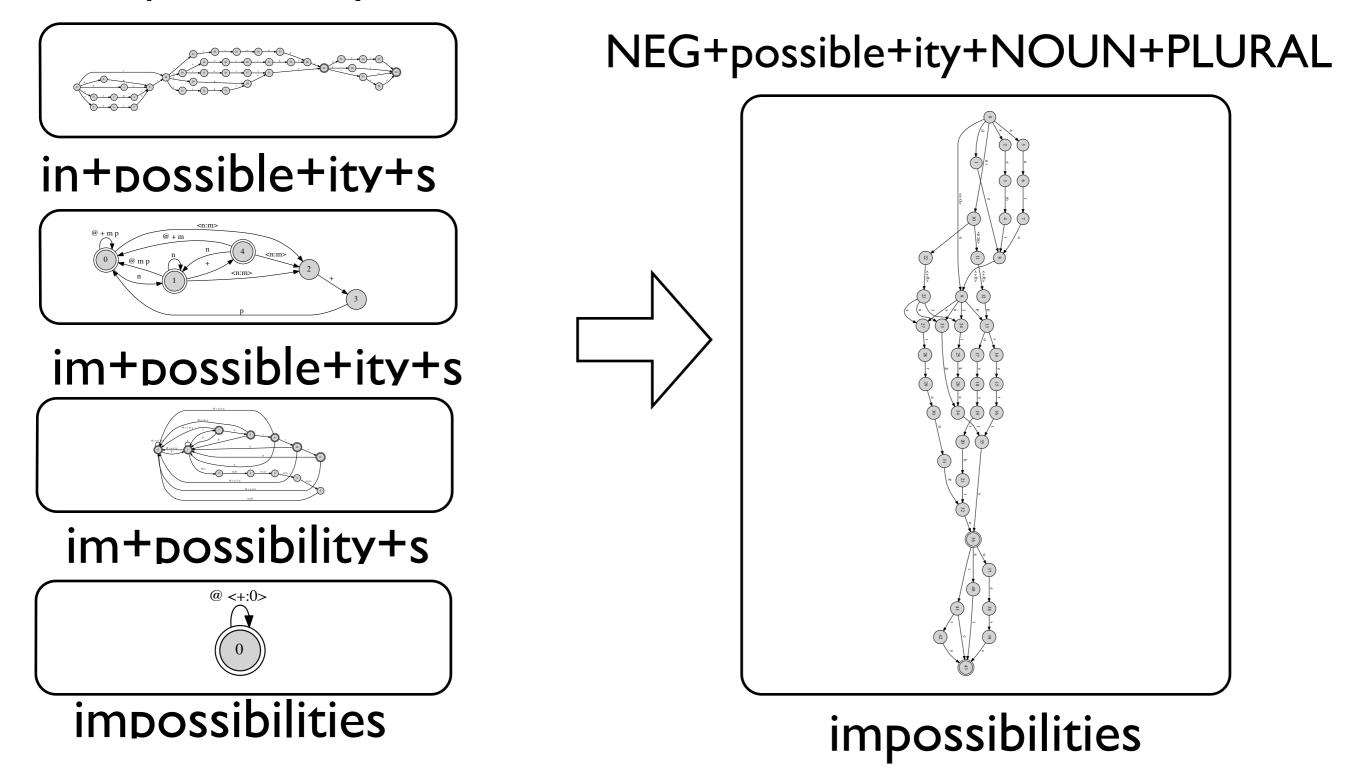
Formal definition



string-to-string mapping

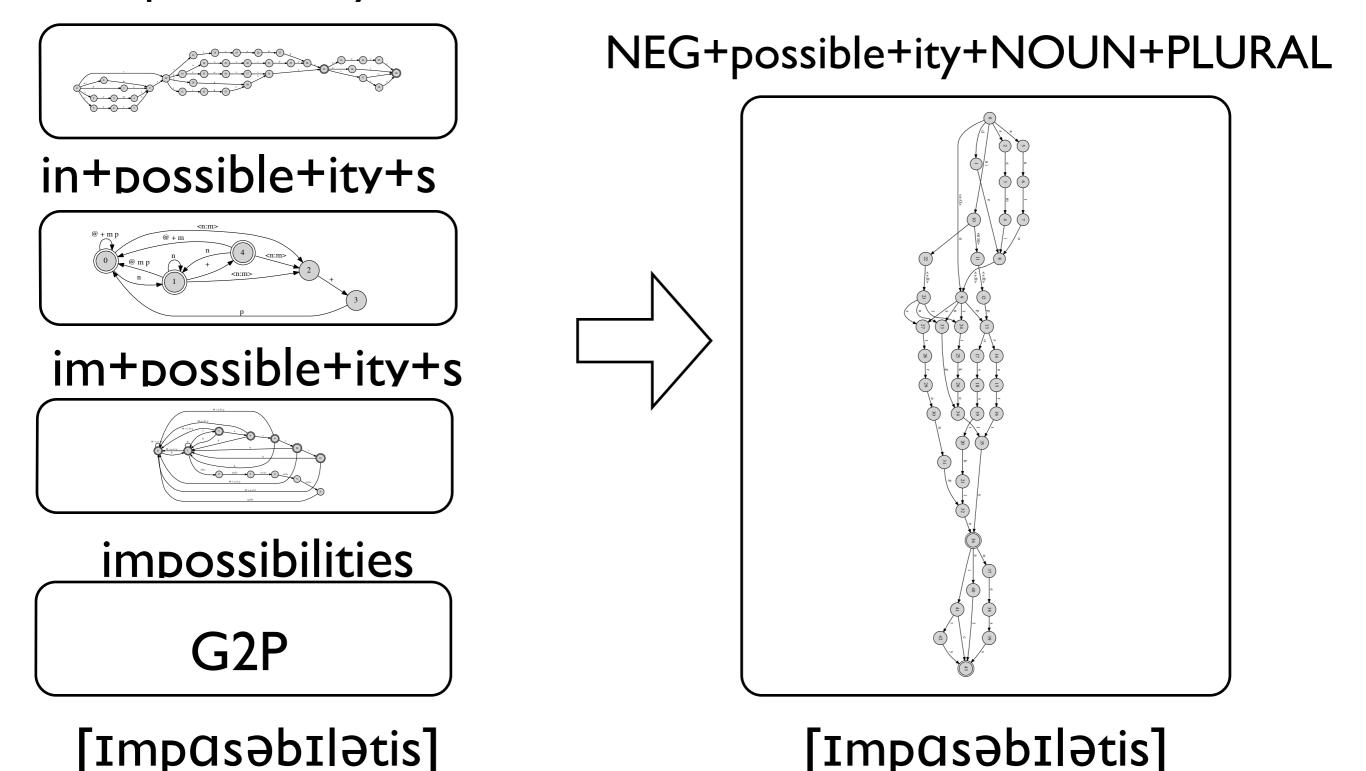
RE: composition

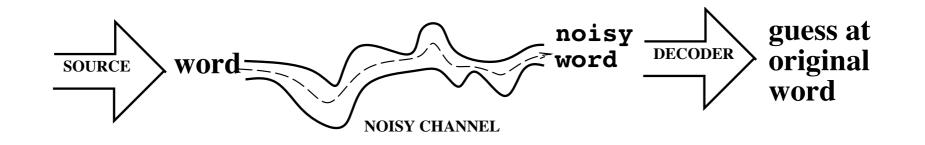
NEG+possible+ity+NOUN+PLURAL



Orthographic vs. phonetic representation

NEG+possible+ity+NOUN+PLURAL

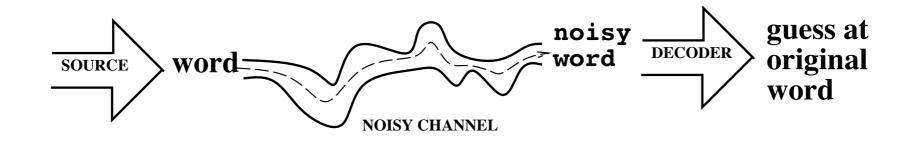




A general framework for thinking about spell checking, speech recognition, and other problems that involve decoding in probabilistic models

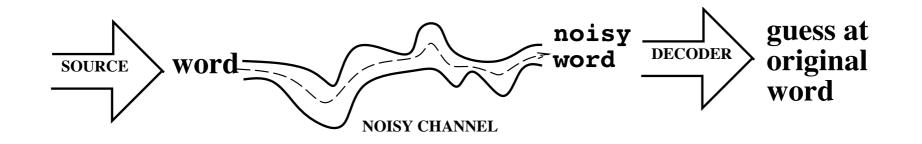
Similar problem to morphology 'decoding'

Example: spell checking



Problem form

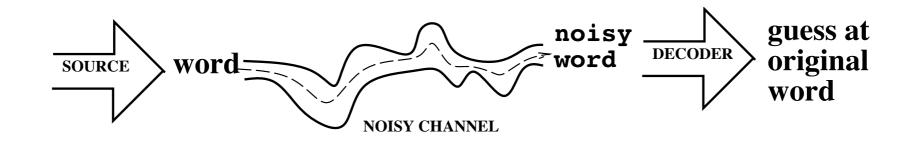
$$\hat{w} = \operatorname*{argmax}_{w \in V} P(w|O)$$



Problem form

$$\hat{w} = \operatorname*{argmax}_{w \in V} P(w|O)$$

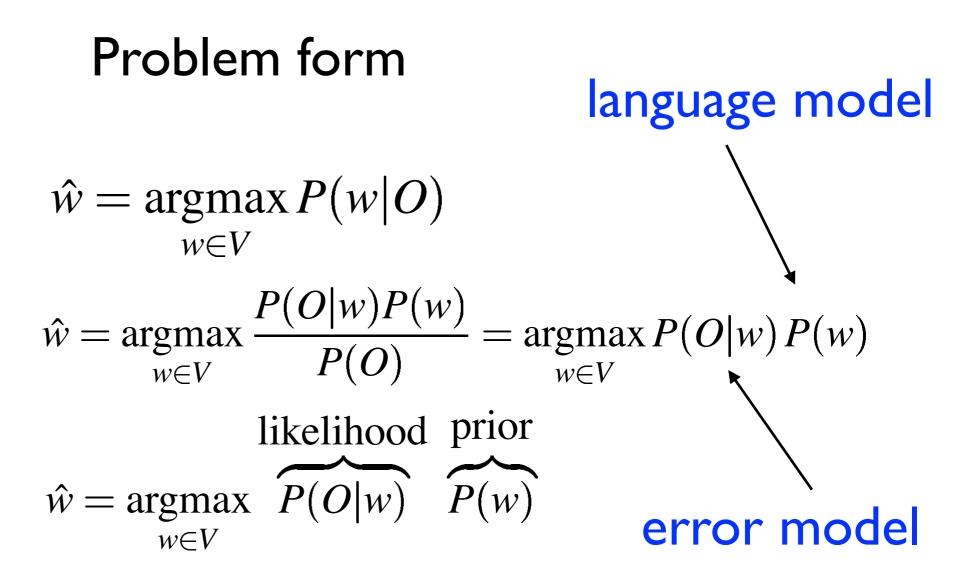
$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$



Problem form

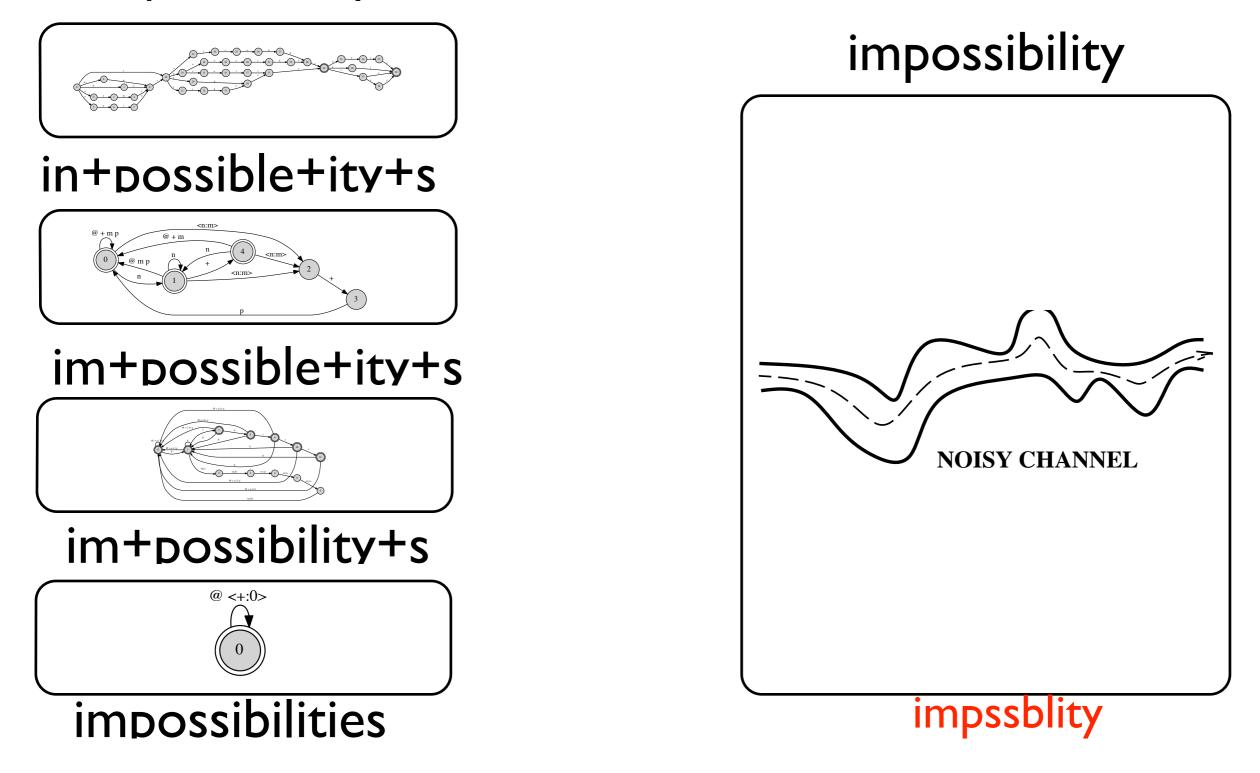
$$\hat{w} = \operatorname*{argmax}_{w \in V} P(w|O)$$

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} \frac{P(O|w)P(w)}{P(O)}$$

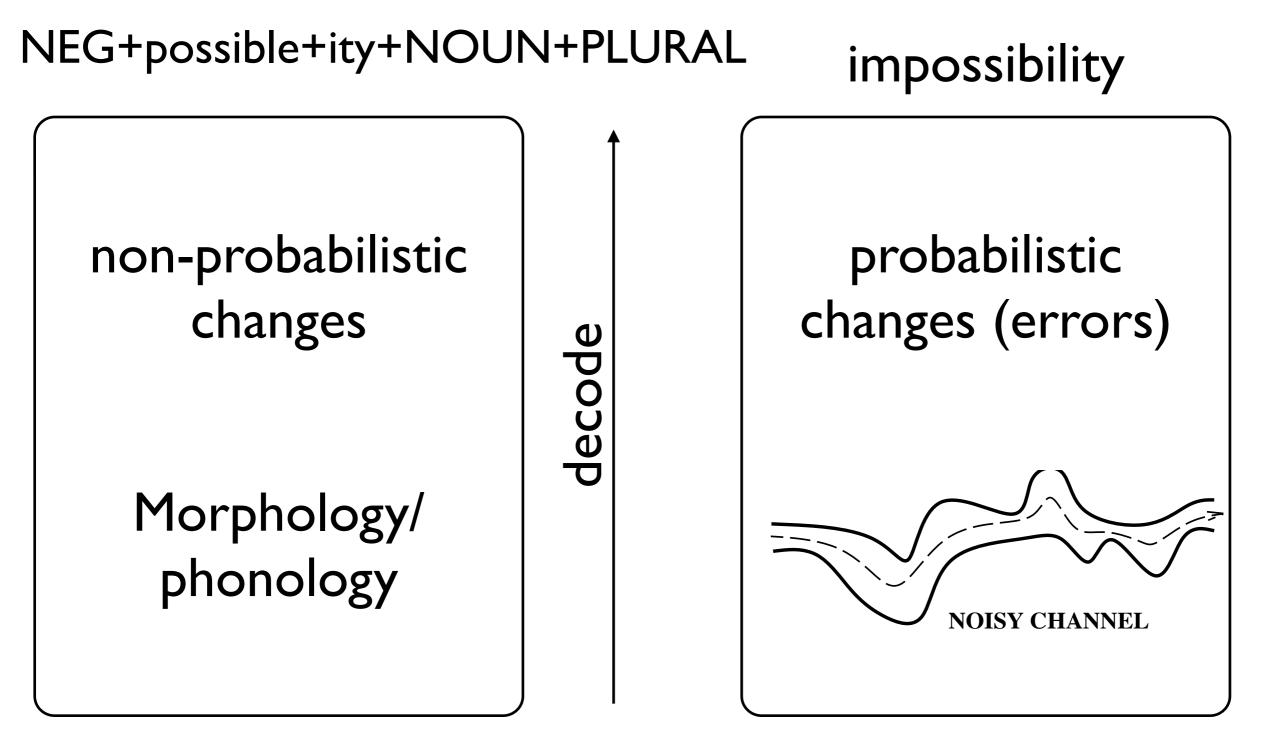


Decoding

NEG+possible+ity+NOUN+PLURAL



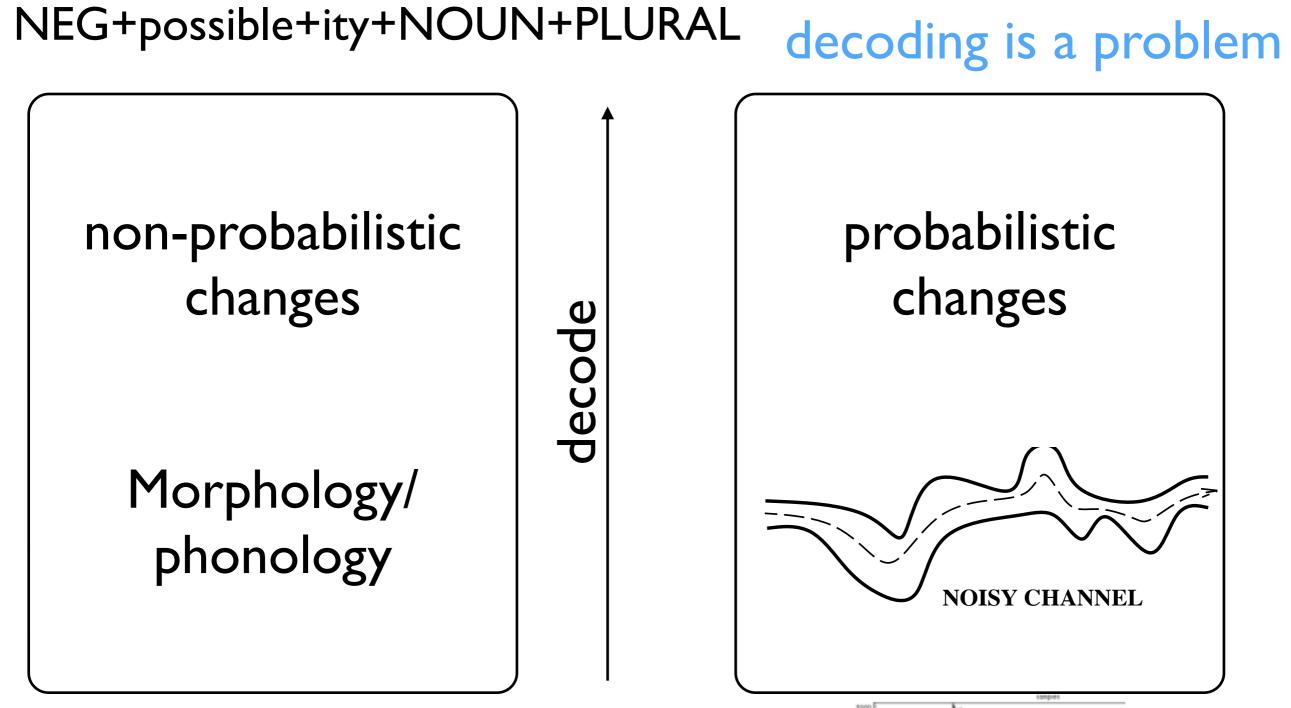
Decoding



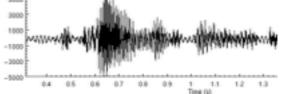
impossibilities

impssblity

Decoding/speech processing

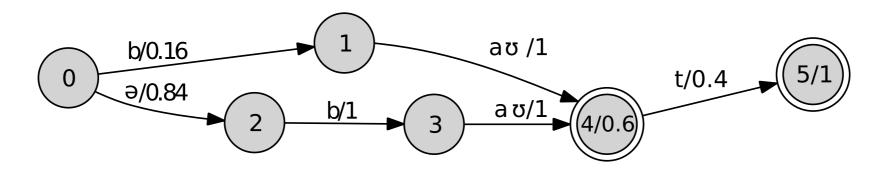


impossibilities



Probabilistic automata

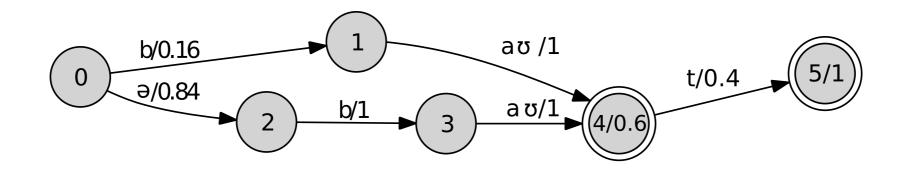
Intuition



- define probability distributions over strings
- symbols have transition probabilities
- states have final/halting probabilities
- probabilities are multiplied along paths
- probabilities are summed for several parallel paths

Probabilistic automata

Intuition

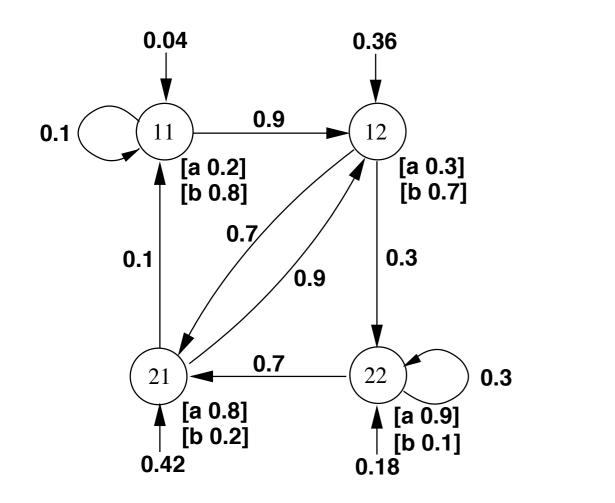


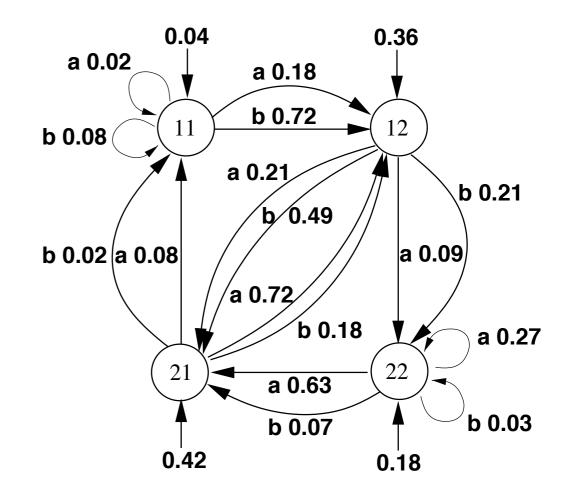
 $p([\Rightarrowbavt]) = 0.336 (0.84 \times 1 \times 1 \times 0.4 \times 1)$ $p([\Rightarrowbavt]) = 0.504 (0.84 \times 1 \times 1 \times 0.6)$ $p([bavt]) = 0.064 (0.16 \times 1 \times 0.4 \times 1)$ $p([bavt]) = 0.096 (0.16 \times 1 \times 0.6)$

Aside: HMMs and prob. automata

Are equivalent (though automata may be more compact)

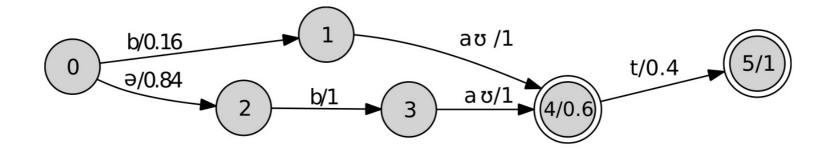
 \Rightarrow





Probabilistic automata

from probabilistic to weighted



As always, we would prefer using(negative) logprobs, since this makes calculations easier:

 $-\log(0.16) \approx 1.8326$ $-\log(0.84) \approx 0.1744$ $-\log(1) = 0$ $-\log(0) = \infty$

Since the more probable is now numerically smaller, we call them weights

Semirings

A semiring $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1}) = a$ ring that may lack negation.

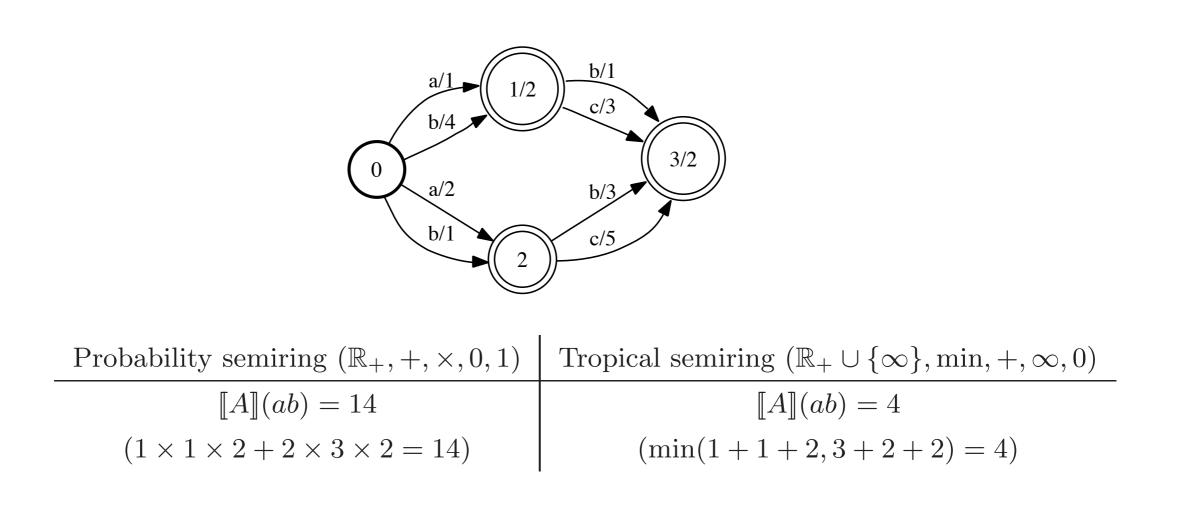
- Sum: to compute the weight of a sequence (sum of the weights of the paths labeled with that sequence).
- **Product**: to compute the weight of a path (product of the weights of constituent transitions).

Semiring	Set	\oplus	\otimes	$\overline{0}$	1
Boolean	$\{0,1\}$	\vee	\wedge	0	1
Probability	\mathbb{R}_+	+	×	0	1
Log	$ \mathbb{R} \cup \{-\infty, +\infty\} $	\oplus_{\log}	+	$+\infty$	0
Tropical	$ \mathbb{R} \cup \{-\infty, +\infty\} $	min	+	$+\infty$	0
String	$\Sigma^* \cup \{\infty\}$	\wedge	•	∞	ϵ

 \oplus_{\log} is defined by: $x \oplus_{\log} y = -\log(e^{-x} + e^{-y})$ and \wedge is longest common prefix. The string semiring is a *left semiring*.

$$s \otimes \overline{1} = \mathbf{s} \qquad s \oplus \overline{0} = \mathbf{s}$$
$$s \otimes \overline{0} = \overline{0}$$

Semirings



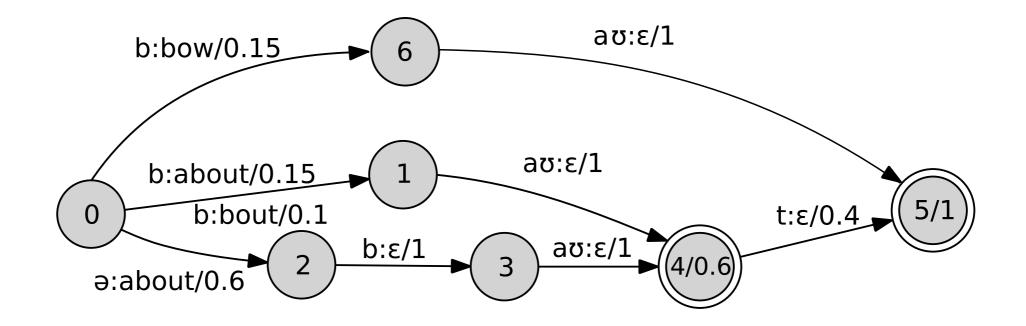
Formal definition

 $A = (\Sigma, Q, \lambda, \delta, \sigma, \rho, I, F)$

- $(\Sigma, Q, \delta, I, F)$ is an automaton,
- Initial output function λ ,
- Output function $\sigma: Q \times \Sigma \times Q \to K$,
- Final output function ρ ,
- Function $f: \Sigma^* \to (K, +, \cdot)$ associated with A: $\forall u \in Dom(f), f(u) = \sum_{(i,q) \in I \times (\delta(i,u) \cap F)} (\lambda(i) \cdot \sigma(i, u, q) \cdot \rho(q)).$

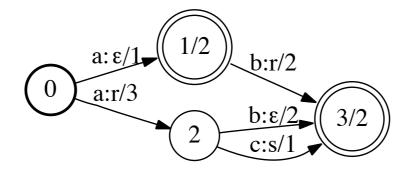
Weighted transducers

Intuition



Weighted transducers

Semirings



Probability semiring $(\mathbb{R}_+, +, \times, 0, 1)$	Tropical semiring $(\mathbb{R}_+ \cup \{\infty\}, \min, +, \infty, 0)$		
$[\![T]\!](ab,r) = 16$	$\llbracket T \rrbracket (ab, r) = 5$		
$(1 \times 2 \times 2 + 3 \times 2 \times 2 = 16)$	$(\min(1+2+2,3+2+2) = 5)$		

Weighted transducers

Formal definition

 $T = (\mathbf{\Sigma}, \mathbf{\Delta}, Q, \delta, \sigma, I, F)$

- Finite alphabets Σ and Δ ,
- Finite set of states Q,
- Transition function $\delta: Q \times \Sigma \to 2^Q$,
- Output function $\sigma: Q \times \Sigma \times Q \to \Sigma^*$,
- $I \subseteq Q$ set of initial states,
- $F \subseteq Q$ set of final states.

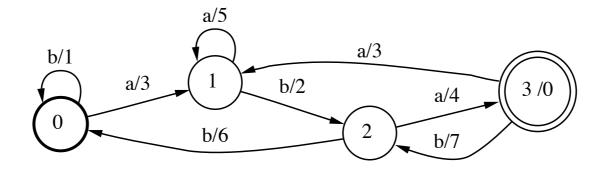
T defines a relation:

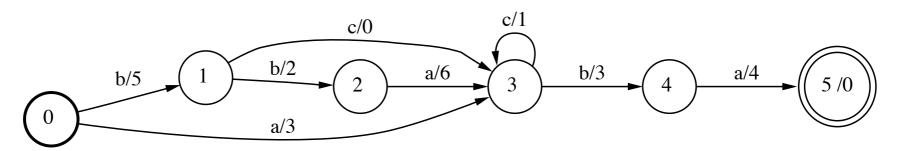
$$R(T) = \{(u,v) \in (\Sigma^*)^2 : v \in \bigcup_{q \in (\delta(I,u) \cap F)} \sigma(I,u,q)\}$$

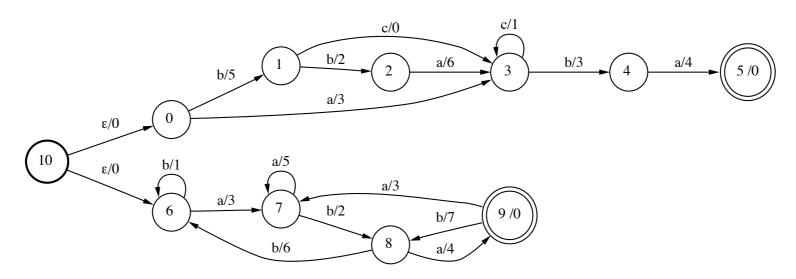
Operations on weighted automata

Booleans

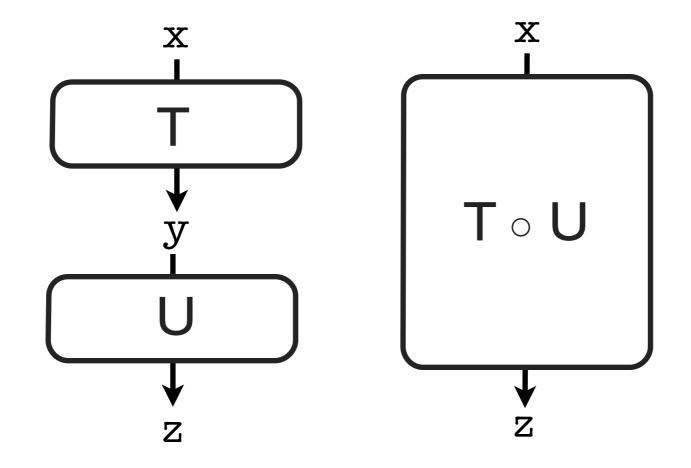
Union: Example



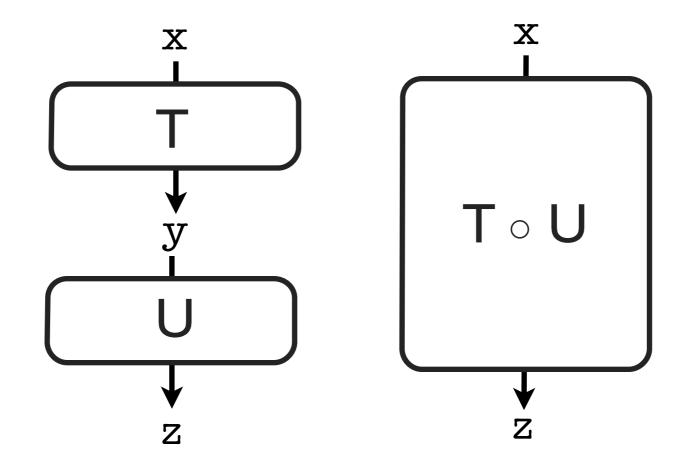




Composition

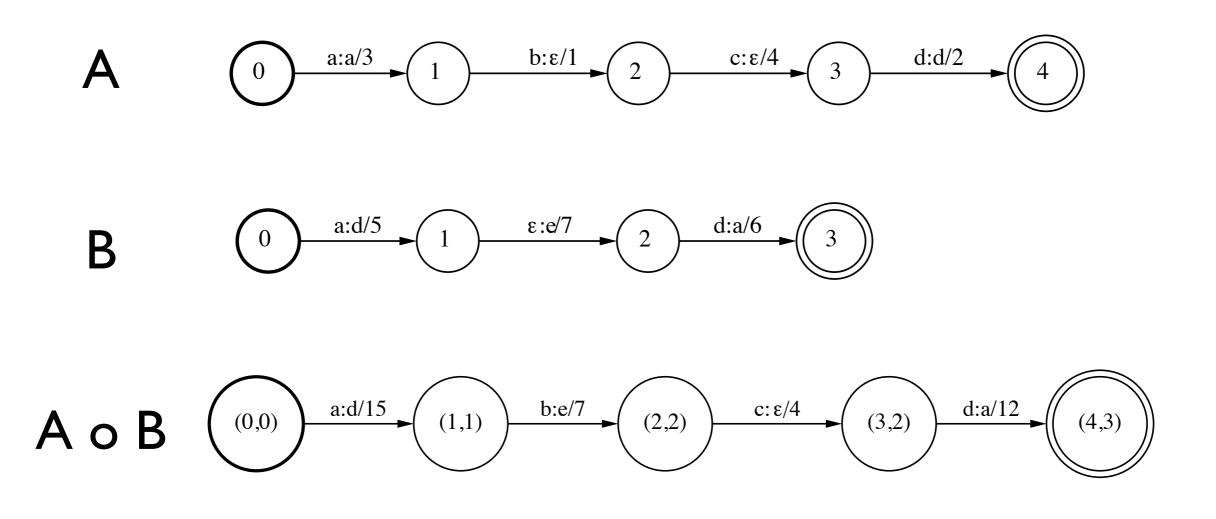


Composition

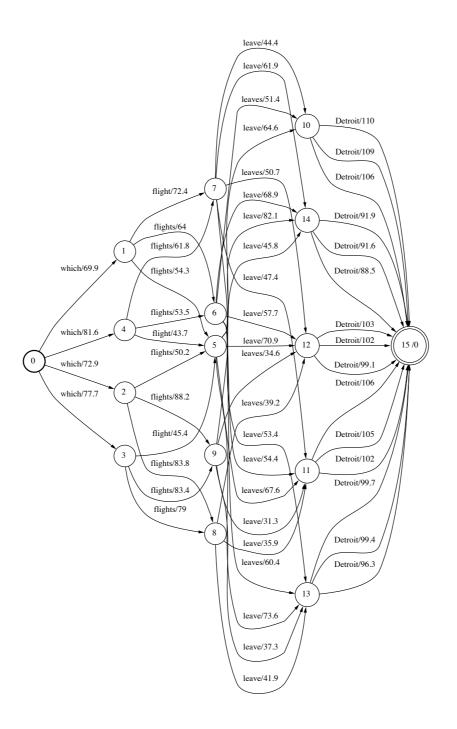


Multiplicative ~ p(y|x) p(z|y)

Composition

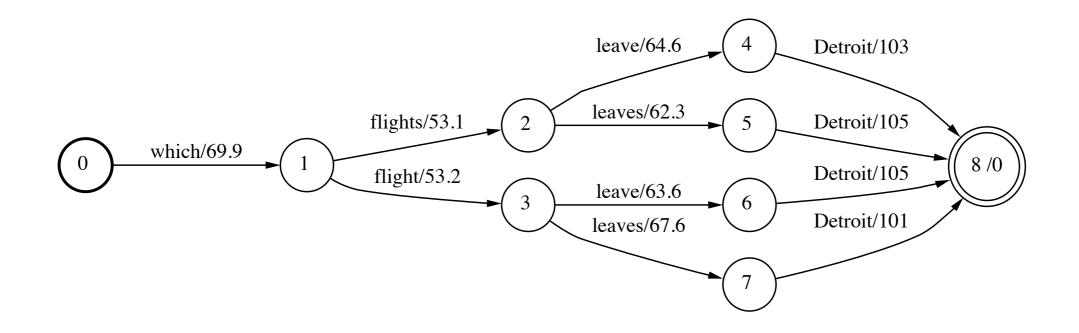


Determinization



Language model: 16 states, 53 transitions

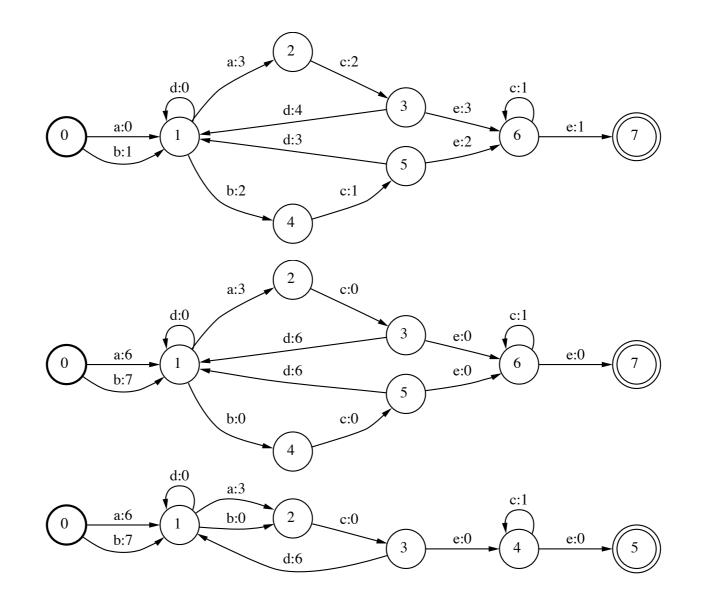
Determinization



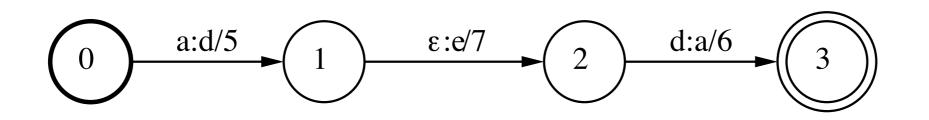
Same language model: 9 states, 11 transitions

Minimization

by weight pushing

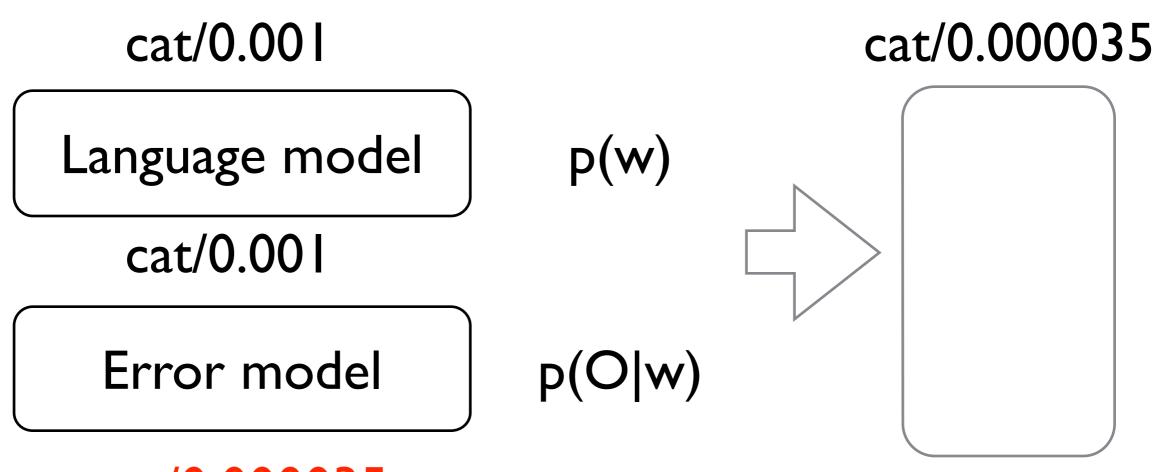


Projection



Trivial: just delete at in/out labels

probabilistic spell checking



cxat/0.000035

cxat/0.000035

constructing p(w) and p(O|w)

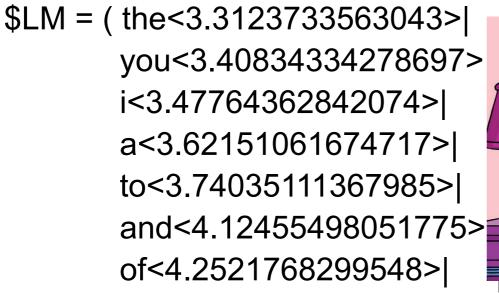
p(w) can be a n-gram language model converted to a transducer, easily estimated from data

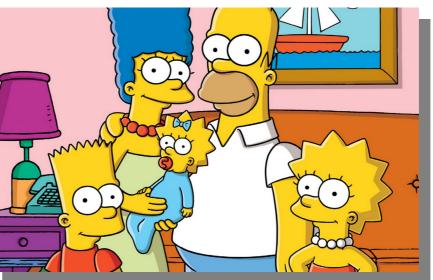
p(O|w) is much more difficult

What's the probability of confusing "a" with "z"

Is this word-dependent? Context-dependent?

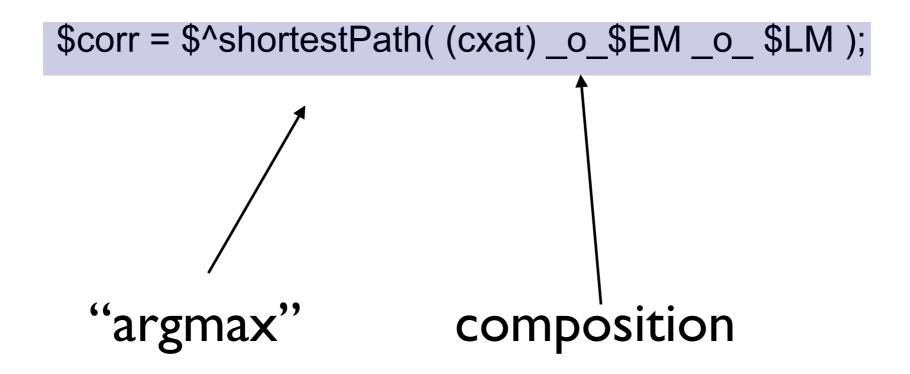
Example unigram language model (in Kleene* weighted FST language)



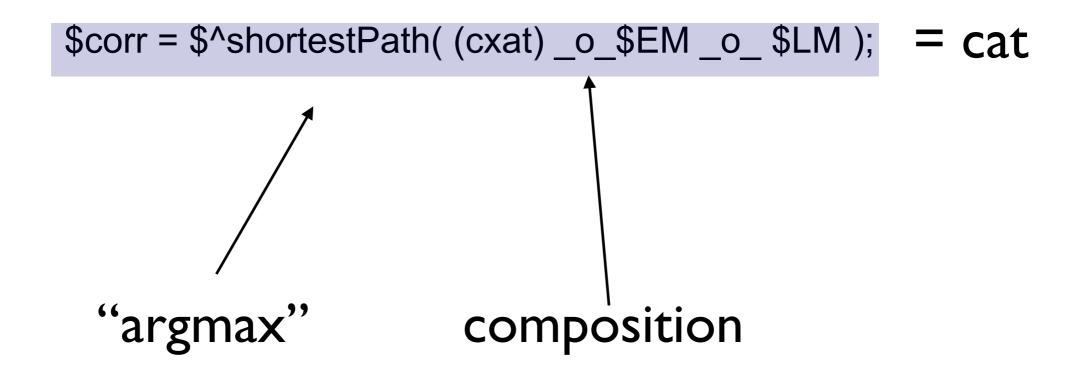


Unigram model from The Simpsons word frequency list (http://pastebin.com/anKcMdvk)

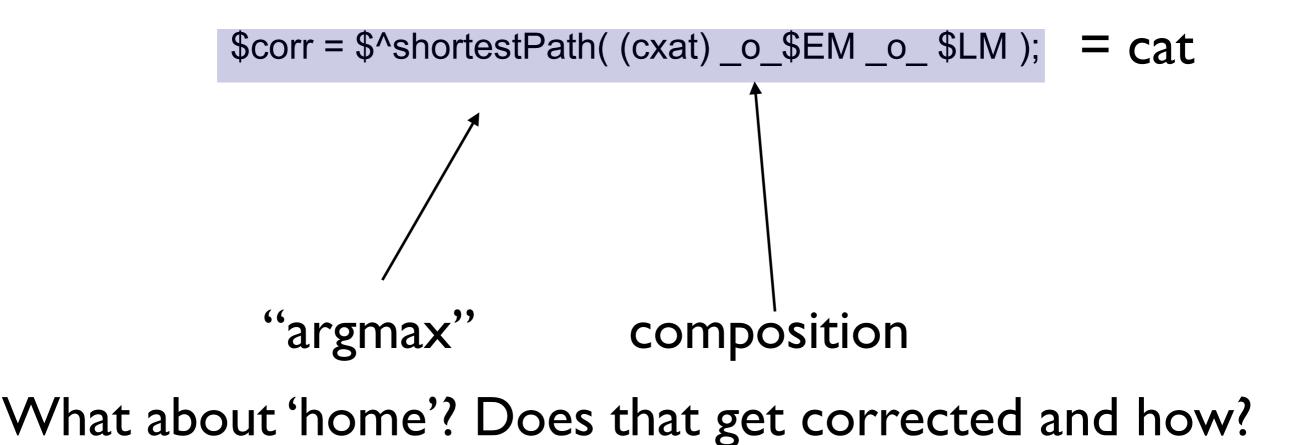
Simple error model (insertion/deletion/replacements have a weight of one)



Simple error model (insertion/deletion/replacements have a weight of one)

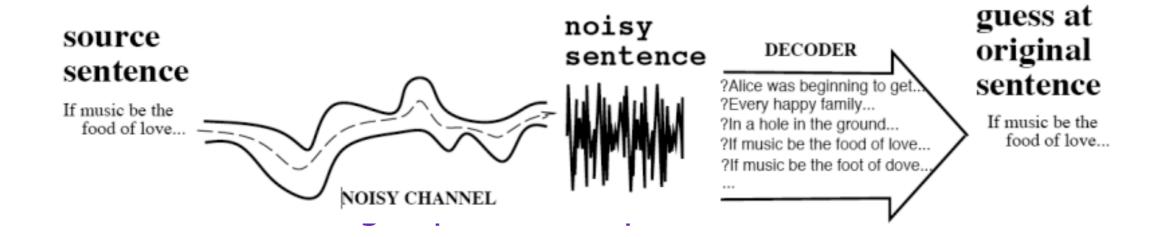


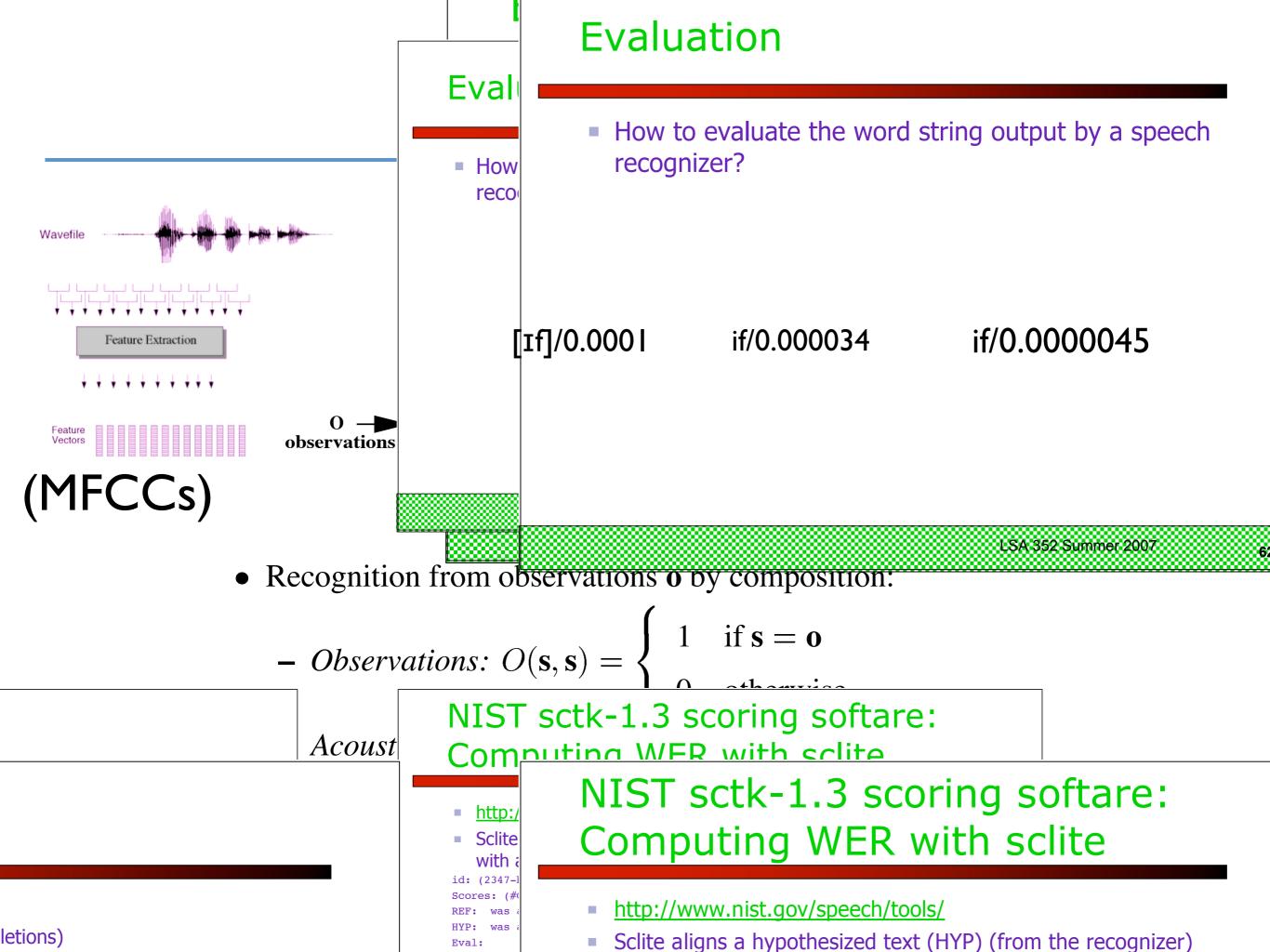
Simple error model (insertion/deletion/replacements have a weight of one)



Speech recognition

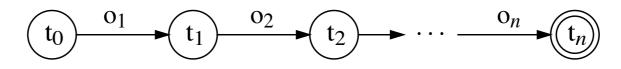
Noisy channel model for ASR



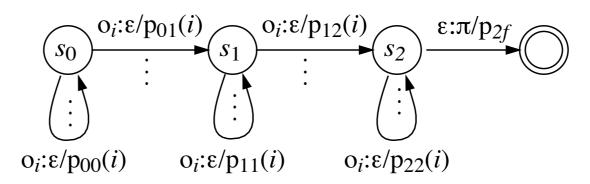


Slightly more detail

• Quantized observations:



• Phone model A_{π} : observations \rightarrow phones



Acoustic transducer: $A = \left(\sum_{\pi} A_{\pi}\right)^*$

• Word pronunciations D_{data} : phones \rightarrow words

