
Phonology and speech applications
with weighted automata

Mans Hulden
Dept. of Linguistics

mans.hulden@colorado.edu

Natural Language Processing
LING/CSCI 5832

Feb 19 2014

mailto:mans.hulden@colorado.edu

Overview

(1) Recap unweighted finite automata
and transducers

(2) Extend to probabilistic weighted
automata/transducers

(3) See how these can be used in
natural language applications + a brief
look at speech applications

RE: anatomy of a FSA

L = a b* c

a c
b

1 20

Regular expression

Graph representation

Q = {0,1,2} (set of states)
Σ = {a,b,c} (alphabet)  
q0 = 0 (initial state)
F = {2} (set of final states)
δ(0,a) = 1, δ(1,b) = 1, δ(1,c) = 2
 (transition function)

Formal definition

defines a set of strings

RE: anatomy of an FST

Q = {0,1,2,3} (set of states)
Σ = {a,b,c,d} (alphabet)  
q0 = 0 (initial state)
F = {0,1,2} (set of final states)
δ (transition function)

Formal definition

Graph representation

0

a b d

1c

2a

3

<a:b>

b d

c

a b

c

d

string-to-string mapping

RE: composition

in+possible+ity+s

im+possible+ity+s

im+possibility+s

impossibilities

0

8
u i

5

a 2

s
1d

10

+

9e

3e 4m

i

6u 7t

o

n + 29
u

23

s

14p

11
l

12i 13k

30
e

18
o

15r 16e 17t 31t

19s 20s 21i 22b 28l

24t 25r 26a 27n
g

32

e

g

l

y

37

i
36a

33
n

34e 35s

39

s

l

38

t

c

y

0

@ + m p

1n
2

<n:m>

@ m p
4

+
n

<n:m>

3

+

p

@ + m
n <n:m>

0

@ + e i l t y

1
b

@ + e i t y

b

7l

2

<l:i>

3<e:l> 4<+:i>

5

<i:t>

6

<t:y>

<y:0>

@ + i l t y

b
8

e

@ e i l t y

9
+

b

@ + e l t y

b

10

i

@ + e i l y

b

11

t

@ + e i l t

b

0

@ <+:0>

0

10

u i

5

a
2

s

1
d

9
<+:0>

8

e

3
e

4
m

i

6
u

7
t

o

<+:0>

33

u

27

s

13

p

24
l

22

n

11
<n:m

>
12

<+:0>
p

17

o

14
r

15
e

16
t

35

t

18
s

19
s

20

i

21
b

32
l

23
<+:0>

u s l

25
i

26
k

34
e

28
t

29
r

30
a

31
n

g

36
e

g

l
y

41

i
40

a

37
n

38
e

39
s

43

s

l

42

t

c

y

impossibilities

NEG+possible+ity+NOUN+PLURAL

NEG+possible+ity+NOUN+PLURAL

Orthographic vs. phonetic representation

in+possible+ity+s

im+possible+ity+s

impossibilities

0

8
u i

5

a 2

s
1d

10

+

9e

3e 4m

i

6u 7t

o

n + 29
u

23

s

14p

11
l

12i 13k

30
e

18
o

15r 16e 17t 31t

19s 20s 21i 22b 28l

24t 25r 26a 27n
g

32

e

g

l

y

37

i
36a

33
n

34e 35s

39

s

l

38

t

c

y

0

@ + m p

1n
2

<n:m>

@ m p
4

+
n

<n:m>

3

+

p

@ + m
n <n:m>

0

@ + e i l t y

1
b

@ + e i t y

b

7l

2

<l:i>

3<e:l> 4<+:i>

5

<i:t>

6

<t:y>

<y:0>

@ + i l t y

b
8

e

@ e i l t y

9
+

b

@ + e l t y

b

10

i

@ + e i l y

b

11

t

@ + e i l t

b

0

10

u i

5

a
2

s

1
d

9
<+:0>

8

e

3
e

4
m

i

6
u

7
t

o

<+:0>

33

u

27

s

13

p

24
l

22

n

11
<n:m

>
12

<+:0>
p

17

o

14
r

15
e

16
t

35

t

18
s

19
s

20

i

21
b

32
l

23
<+:0>

u s l

25
i

26
k

34
e

28
t

29
r

30
a

31
n

g

36
e

g

l
y

41

i
40

a

37
n

38
e

39
s

43

s

l

42

t

c

y

[ɪmpɑsəbɪlətis]

NEG+possible+ity+NOUN+PLURAL

NEG+possible+ity+NOUN+PLURAL

[ɪmpɑsəbɪlətis]

G2P

Noisy channel models

Similar problem to morphology
‘decoding’

A general framework for thinking about
spell checking, speech recognition, and
other problems that involve decoding in
probabilistic models

Section 5.4. Probabilistic Models 145

recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we need to figure out the correct sequence of letters in the correctly-
spelled word.

NOISY CHANNEL

word
noisy
wordSOURCE

DECODER
guess at
original
word

Figure 5.1 The noisy channel model

The intuition of the noisy channel model (see Figure 5.1) is to treat NOISY
CHANNEL

the surface form (the ‘reduced’ pronunciation or misspelled word) as an in-
stance of the lexical form (the ‘lexical’ pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces ‘noise’ which makes it hard to recognize the ‘true’ word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this ‘true’ word and hence recover it. For the complete speech
recognition tasks, there are many sources of ‘noise’; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the
channel (microphones, telephone networks, etc). Since this chapter focuses
on pronunciation, what we mean by ‘noise’ here is the variation in pronun-
ciation that masks the lexical or ‘canonical’ pronunciation; the other sources
of noise in a speech recognition system will be discussed in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
mask the correct spelling of the word. The metaphor of the noisy channel
comes from the application of the model to speech recognition in the IBM
labs in the 70’s (Jelinek, 1976). But the algorithm itself is a special case of
Bayesian inference and as such has been known since the work of Bayes BAYESIAN

(1763). Bayesian inference or Bayesian classification was applied success-
fully to language problems as early as the late 1950’s, including the OCR
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace
(1964) on applying Bayesian inference to determine the authorship of the
Federalist papers.

In Bayesian classification, as in any classification task, we are given
some observation and our job is to determine which of a set of classes it

Example: spell checking

Section 5.4. Probabilistic Models 145

recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we need to figure out the correct sequence of letters in the correctly-
spelled word.

NOISY CHANNEL

word
noisy
wordSOURCE

DECODER
guess at
original
word

Figure 5.1 The noisy channel model

The intuition of the noisy channel model (see Figure 5.1) is to treat NOISY
CHANNEL

the surface form (the ‘reduced’ pronunciation or misspelled word) as an in-
stance of the lexical form (the ‘lexical’ pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces ‘noise’ which makes it hard to recognize the ‘true’ word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this ‘true’ word and hence recover it. For the complete speech
recognition tasks, there are many sources of ‘noise’; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the
channel (microphones, telephone networks, etc). Since this chapter focuses
on pronunciation, what we mean by ‘noise’ here is the variation in pronun-
ciation that masks the lexical or ‘canonical’ pronunciation; the other sources
of noise in a speech recognition system will be discussed in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
mask the correct spelling of the word. The metaphor of the noisy channel
comes from the application of the model to speech recognition in the IBM
labs in the 70’s (Jelinek, 1976). But the algorithm itself is a special case of
Bayesian inference and as such has been known since the work of Bayes BAYESIAN

(1763). Bayesian inference or Bayesian classification was applied success-
fully to language problems as early as the late 1950’s, including the OCR
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace
(1964) on applying Bayesian inference to determine the authorship of the
Federalist papers.

In Bayesian classification, as in any classification task, we are given
some observation and our job is to determine which of a set of classes it

146 Chapter 5. Probabilistic Models of Pronunciation and Spelling

belongs to. For speech recognition, imagine for the moment that the ob-
servation is the string of phones which make up a word as we hear it. For
spelling error detection, the observation might be the string of letters that
constitute a possibly-misspelled word. In both cases, we want to classify
the observations into words; thus in the speech case, no matter which of the
many possible ways the word about is pronounced (see Chapter 4) we want
to classify it as about. In the spelling case, no matter how the word separate
is misspelled, we’d like to recognize it as separate.

Let’s begin with the pronunciation example. We are given a string of
phones (say). We want to know which word corresponds to this string
of phones. The Bayesian interpretation of this task starts by considering all
possible classes — in this case, all possible words. Out of this universe of
words, we want to chose the word which is most probable given the ob-
servation we have (). In other words, we want, out of all words in the
vocabulary V the single word such that P word observation is highest. WeV
use ŵ to mean ‘our estimate of the correct w’, and we’ll use O to mean ‘theŴ

O observation sequence ’ (we call it a sequence because we think of each
letter as an individual observation). Then the equation for picking the best
word given is:

ŵ argmax
w V

P w O (5.1)

The function argmaxx f x means ‘the x such that f x is maximized’.
While (5.1) is guaranteed to give us the optimal word w, it is not clear how
to make the equation operational; that is, for a given word w and observation
sequence Owe don’t know how to directly compute P w O . The intuition of
Bayesian classification is to use Bayes’ rule to transform (5.1) into a product
of two probabilities, each of which turns out to be easier to compute than
P w O . Bayes’ rule is presented in (5.2); it gives us a way to break down
P x O into three other probabilities:

P x y
P y x P x

P y
(5.2)

We can see this by substituting (5.2) into (5.1) to get (5.3):

ŵ argmax
w V

P O w P w
P O

(5.3)

The probabilities on the right hand side of (5.3) are for the most part
easier to compute than the probability P w O which we were originally try-
ing to maximize in (5.1). For example, P w , the probability of the word
itself, we can estimate by the frequency of the word. And we will see below

Problem form

Noisy channel models

Section 5.4. Probabilistic Models 145

recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we need to figure out the correct sequence of letters in the correctly-
spelled word.

NOISY CHANNEL

word
noisy
wordSOURCE

DECODER
guess at
original
word

Figure 5.1 The noisy channel model

The intuition of the noisy channel model (see Figure 5.1) is to treat NOISY
CHANNEL

the surface form (the ‘reduced’ pronunciation or misspelled word) as an in-
stance of the lexical form (the ‘lexical’ pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces ‘noise’ which makes it hard to recognize the ‘true’ word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this ‘true’ word and hence recover it. For the complete speech
recognition tasks, there are many sources of ‘noise’; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the
channel (microphones, telephone networks, etc). Since this chapter focuses
on pronunciation, what we mean by ‘noise’ here is the variation in pronun-
ciation that masks the lexical or ‘canonical’ pronunciation; the other sources
of noise in a speech recognition system will be discussed in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
mask the correct spelling of the word. The metaphor of the noisy channel
comes from the application of the model to speech recognition in the IBM
labs in the 70’s (Jelinek, 1976). But the algorithm itself is a special case of
Bayesian inference and as such has been known since the work of Bayes BAYESIAN

(1763). Bayesian inference or Bayesian classification was applied success-
fully to language problems as early as the late 1950’s, including the OCR
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace
(1964) on applying Bayesian inference to determine the authorship of the
Federalist papers.

In Bayesian classification, as in any classification task, we are given
some observation and our job is to determine which of a set of classes it

146 Chapter 5. Probabilistic Models of Pronunciation and Spelling

belongs to. For speech recognition, imagine for the moment that the ob-
servation is the string of phones which make up a word as we hear it. For
spelling error detection, the observation might be the string of letters that
constitute a possibly-misspelled word. In both cases, we want to classify
the observations into words; thus in the speech case, no matter which of the
many possible ways the word about is pronounced (see Chapter 4) we want
to classify it as about. In the spelling case, no matter how the word separate
is misspelled, we’d like to recognize it as separate.

Let’s begin with the pronunciation example. We are given a string of
phones (say). We want to know which word corresponds to this string
of phones. The Bayesian interpretation of this task starts by considering all
possible classes — in this case, all possible words. Out of this universe of
words, we want to chose the word which is most probable given the ob-
servation we have (). In other words, we want, out of all words in the
vocabulary V the single word such that P word observation is highest. WeV
use ŵ to mean ‘our estimate of the correct w’, and we’ll use O to mean ‘theŴ

O observation sequence ’ (we call it a sequence because we think of each
letter as an individual observation). Then the equation for picking the best
word given is:

ŵ argmax
w V

P w O (5.1)

The function argmaxx f x means ‘the x such that f x is maximized’.
While (5.1) is guaranteed to give us the optimal word w, it is not clear how
to make the equation operational; that is, for a given word w and observation
sequence Owe don’t know how to directly compute P w O . The intuition of
Bayesian classification is to use Bayes’ rule to transform (5.1) into a product
of two probabilities, each of which turns out to be easier to compute than
P w O . Bayes’ rule is presented in (5.2); it gives us a way to break down
P x O into three other probabilities:

P x y
P y x P x

P y
(5.2)

We can see this by substituting (5.2) into (5.1) to get (5.3):

ŵ argmax
w V

P O w P w
P O

(5.3)

The probabilities on the right hand side of (5.3) are for the most part
easier to compute than the probability P w O which we were originally try-
ing to maximize in (5.1). For example, P w , the probability of the word
itself, we can estimate by the frequency of the word. And we will see below

Problem form

146 Chapter 5. Probabilistic Models of Pronunciation and Spelling

belongs to. For speech recognition, imagine for the moment that the ob-
servation is the string of phones which make up a word as we hear it. For
spelling error detection, the observation might be the string of letters that
constitute a possibly-misspelled word. In both cases, we want to classify
the observations into words; thus in the speech case, no matter which of the
many possible ways the word about is pronounced (see Chapter 4) we want
to classify it as about. In the spelling case, no matter how the word separate
is misspelled, we’d like to recognize it as separate.

Let’s begin with the pronunciation example. We are given a string of
phones (say). We want to know which word corresponds to this string
of phones. The Bayesian interpretation of this task starts by considering all
possible classes — in this case, all possible words. Out of this universe of
words, we want to chose the word which is most probable given the ob-
servation we have (). In other words, we want, out of all words in the
vocabulary V the single word such that P word observation is highest. WeV
use ŵ to mean ‘our estimate of the correct w’, and we’ll use O to mean ‘theŴ

O observation sequence ’ (we call it a sequence because we think of each
letter as an individual observation). Then the equation for picking the best
word given is:

ŵ argmax
w V

P w O (5.1)

The function argmaxx f x means ‘the x such that f x is maximized’.
While (5.1) is guaranteed to give us the optimal word w, it is not clear how
to make the equation operational; that is, for a given word w and observation
sequence Owe don’t know how to directly compute P w O . The intuition of
Bayesian classification is to use Bayes’ rule to transform (5.1) into a product
of two probabilities, each of which turns out to be easier to compute than
P w O . Bayes’ rule is presented in (5.2); it gives us a way to break down
P x O into three other probabilities:

P x y
P y x P x

P y
(5.2)

We can see this by substituting (5.2) into (5.1) to get (5.3):

ŵ argmax
w V

P O w P w
P O

(5.3)

The probabilities on the right hand side of (5.3) are for the most part
easier to compute than the probability P w O which we were originally try-
ing to maximize in (5.1). For example, P w , the probability of the word
itself, we can estimate by the frequency of the word. And we will see below

(Bayes’ Rule)

Noisy channel models

Section 5.4. Probabilistic Models 145

recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we need to figure out the correct sequence of letters in the correctly-
spelled word.

NOISY CHANNEL

word
noisy
wordSOURCE

DECODER
guess at
original
word

Figure 5.1 The noisy channel model

The intuition of the noisy channel model (see Figure 5.1) is to treat NOISY
CHANNEL

the surface form (the ‘reduced’ pronunciation or misspelled word) as an in-
stance of the lexical form (the ‘lexical’ pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces ‘noise’ which makes it hard to recognize the ‘true’ word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this ‘true’ word and hence recover it. For the complete speech
recognition tasks, there are many sources of ‘noise’; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the
channel (microphones, telephone networks, etc). Since this chapter focuses
on pronunciation, what we mean by ‘noise’ here is the variation in pronun-
ciation that masks the lexical or ‘canonical’ pronunciation; the other sources
of noise in a speech recognition system will be discussed in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
mask the correct spelling of the word. The metaphor of the noisy channel
comes from the application of the model to speech recognition in the IBM
labs in the 70’s (Jelinek, 1976). But the algorithm itself is a special case of
Bayesian inference and as such has been known since the work of Bayes BAYESIAN

(1763). Bayesian inference or Bayesian classification was applied success-
fully to language problems as early as the late 1950’s, including the OCR
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace
(1964) on applying Bayesian inference to determine the authorship of the
Federalist papers.

In Bayesian classification, as in any classification task, we are given
some observation and our job is to determine which of a set of classes it

146 Chapter 5. Probabilistic Models of Pronunciation and Spelling

belongs to. For speech recognition, imagine for the moment that the ob-
servation is the string of phones which make up a word as we hear it. For
spelling error detection, the observation might be the string of letters that
constitute a possibly-misspelled word. In both cases, we want to classify
the observations into words; thus in the speech case, no matter which of the
many possible ways the word about is pronounced (see Chapter 4) we want
to classify it as about. In the spelling case, no matter how the word separate
is misspelled, we’d like to recognize it as separate.

Let’s begin with the pronunciation example. We are given a string of
phones (say). We want to know which word corresponds to this string
of phones. The Bayesian interpretation of this task starts by considering all
possible classes — in this case, all possible words. Out of this universe of
words, we want to chose the word which is most probable given the ob-
servation we have (). In other words, we want, out of all words in the
vocabulary V the single word such that P word observation is highest. WeV
use ŵ to mean ‘our estimate of the correct w’, and we’ll use O to mean ‘theŴ

O observation sequence ’ (we call it a sequence because we think of each
letter as an individual observation). Then the equation for picking the best
word given is:

ŵ argmax
w V

P w O (5.1)

The function argmaxx f x means ‘the x such that f x is maximized’.
While (5.1) is guaranteed to give us the optimal word w, it is not clear how
to make the equation operational; that is, for a given word w and observation
sequence Owe don’t know how to directly compute P w O . The intuition of
Bayesian classification is to use Bayes’ rule to transform (5.1) into a product
of two probabilities, each of which turns out to be easier to compute than
P w O . Bayes’ rule is presented in (5.2); it gives us a way to break down
P x O into three other probabilities:

P x y
P y x P x

P y
(5.2)

We can see this by substituting (5.2) into (5.1) to get (5.3):

ŵ argmax
w V

P O w P w
P O

(5.3)

The probabilities on the right hand side of (5.3) are for the most part
easier to compute than the probability P w O which we were originally try-
ing to maximize in (5.1). For example, P w , the probability of the word
itself, we can estimate by the frequency of the word. And we will see below

Problem form

146 Chapter 5. Probabilistic Models of Pronunciation and Spelling

belongs to. For speech recognition, imagine for the moment that the ob-
servation is the string of phones which make up a word as we hear it. For
spelling error detection, the observation might be the string of letters that
constitute a possibly-misspelled word. In both cases, we want to classify
the observations into words; thus in the speech case, no matter which of the
many possible ways the word about is pronounced (see Chapter 4) we want
to classify it as about. In the spelling case, no matter how the word separate
is misspelled, we’d like to recognize it as separate.

Let’s begin with the pronunciation example. We are given a string of
phones (say). We want to know which word corresponds to this string
of phones. The Bayesian interpretation of this task starts by considering all
possible classes — in this case, all possible words. Out of this universe of
words, we want to chose the word which is most probable given the ob-
servation we have (). In other words, we want, out of all words in the
vocabulary V the single word such that P word observation is highest. WeV
use ŵ to mean ‘our estimate of the correct w’, and we’ll use O to mean ‘theŴ

O observation sequence ’ (we call it a sequence because we think of each
letter as an individual observation). Then the equation for picking the best
word given is:

ŵ argmax
w V

P w O (5.1)

The function argmaxx f x means ‘the x such that f x is maximized’.
While (5.1) is guaranteed to give us the optimal word w, it is not clear how
to make the equation operational; that is, for a given word w and observation
sequence Owe don’t know how to directly compute P w O . The intuition of
Bayesian classification is to use Bayes’ rule to transform (5.1) into a product
of two probabilities, each of which turns out to be easier to compute than
P w O . Bayes’ rule is presented in (5.2); it gives us a way to break down
P x O into three other probabilities:

P x y
P y x P x

P y
(5.2)

We can see this by substituting (5.2) into (5.1) to get (5.3):

ŵ argmax
w V

P O w P w
P O

(5.3)

The probabilities on the right hand side of (5.3) are for the most part
easier to compute than the probability P w O which we were originally try-
ing to maximize in (5.1). For example, P w , the probability of the word
itself, we can estimate by the frequency of the word. And we will see below

Noisy channel models

Section 5.4. Probabilistic Models 145

recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we need to figure out the correct sequence of letters in the correctly-
spelled word.

NOISY CHANNEL

word
noisy
wordSOURCE

DECODER
guess at
original
word

Figure 5.1 The noisy channel model

The intuition of the noisy channel model (see Figure 5.1) is to treat NOISY
CHANNEL

the surface form (the ‘reduced’ pronunciation or misspelled word) as an in-
stance of the lexical form (the ‘lexical’ pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces ‘noise’ which makes it hard to recognize the ‘true’ word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this ‘true’ word and hence recover it. For the complete speech
recognition tasks, there are many sources of ‘noise’; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the
channel (microphones, telephone networks, etc). Since this chapter focuses
on pronunciation, what we mean by ‘noise’ here is the variation in pronun-
ciation that masks the lexical or ‘canonical’ pronunciation; the other sources
of noise in a speech recognition system will be discussed in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
mask the correct spelling of the word. The metaphor of the noisy channel
comes from the application of the model to speech recognition in the IBM
labs in the 70’s (Jelinek, 1976). But the algorithm itself is a special case of
Bayesian inference and as such has been known since the work of Bayes BAYESIAN

(1763). Bayesian inference or Bayesian classification was applied success-
fully to language problems as early as the late 1950’s, including the OCR
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace
(1964) on applying Bayesian inference to determine the authorship of the
Federalist papers.

In Bayesian classification, as in any classification task, we are given
some observation and our job is to determine which of a set of classes it

146 Chapter 5. Probabilistic Models of Pronunciation and Spelling

belongs to. For speech recognition, imagine for the moment that the ob-
servation is the string of phones which make up a word as we hear it. For
spelling error detection, the observation might be the string of letters that
constitute a possibly-misspelled word. In both cases, we want to classify
the observations into words; thus in the speech case, no matter which of the
many possible ways the word about is pronounced (see Chapter 4) we want
to classify it as about. In the spelling case, no matter how the word separate
is misspelled, we’d like to recognize it as separate.

Let’s begin with the pronunciation example. We are given a string of
phones (say). We want to know which word corresponds to this string
of phones. The Bayesian interpretation of this task starts by considering all
possible classes — in this case, all possible words. Out of this universe of
words, we want to chose the word which is most probable given the ob-
servation we have (). In other words, we want, out of all words in the
vocabulary V the single word such that P word observation is highest. WeV
use ŵ to mean ‘our estimate of the correct w’, and we’ll use O to mean ‘theŴ

O observation sequence ’ (we call it a sequence because we think of each
letter as an individual observation). Then the equation for picking the best
word given is:

ŵ argmax
w V

P w O (5.1)

The function argmaxx f x means ‘the x such that f x is maximized’.
While (5.1) is guaranteed to give us the optimal word w, it is not clear how
to make the equation operational; that is, for a given word w and observation
sequence Owe don’t know how to directly compute P w O . The intuition of
Bayesian classification is to use Bayes’ rule to transform (5.1) into a product
of two probabilities, each of which turns out to be easier to compute than
P w O . Bayes’ rule is presented in (5.2); it gives us a way to break down
P x O into three other probabilities:

P x y
P y x P x

P y
(5.2)

We can see this by substituting (5.2) into (5.1) to get (5.3):

ŵ argmax
w V

P O w P w
P O

(5.3)

The probabilities on the right hand side of (5.3) are for the most part
easier to compute than the probability P w O which we were originally try-
ing to maximize in (5.1). For example, P w , the probability of the word
itself, we can estimate by the frequency of the word. And we will see below

Problem form

Section 5.5. Applying the Bayesian method to spelling 147

that P O w turns out to be easy to estimate as well. But P O , the probabil-
ity of the observation sequence, turns out to be harder to estimate. Luckily,
we can ignore P O . Why? Since we are maximizing over all words, we will
be computing P O w P w

P O for each word. But P O doesn’t change for each
word; we are always asking about the most likely word string for the same
observation O, which must have the same probability P O . Thus:

ŵ argmax
w V

P O w P w
P O

argmax
w V

P O w P w (5.4)

To summarize, the most probable word w given some observation O
can be computing by taking the product of two probabilities for each word,
and choosing the word for which this product is greatest. These two terms
have names; P w is called the Prior probability, and P O w is called the PRIOR

likelihood. LIKELIHOOD

Key Concept #3. ŵ argmax
w V

likelihood
P O w

prior

P w (5.5)

In the next sections we will show how to compute these two probabili-
ties for the probabilities of pronunciation and spelling.

5.5 APPLYING THE BAYESIAN METHOD TO SPELLING

There are many algorithms for spelling correction; we will focus on the
Bayesian (or noisy channel) algorithm because of its generality. Chapter 6
will show how this algorithm can be extended to model real-word spelling
errors; this section will focus on non-word spelling errors. The noisy chan-
nel approach to spelling correction was first suggested by Kernighan et al.
(1990); their program, correct, takes words rejected by the Unix spell pro-
gram, generates a list of potential correct words, rank them according to
Equation (3), and picks the highest-ranked one.

Let’s walk through the algorithm as it applies to Kernighan et al.’s
(1990) example misspelling acress. The algorithm has two stages: proposing
candidate corrections and scoring the candidates.

In order to propose candidate corrections Kernighan et al. make the
simplifying assumption that the correct word will differ from the misspelling
by a single insertion, deletion, substitution, or transposition. As Damerau’s
(1964) results show, even though this assumption causes the algorithm to
miss some corrections, it should handle most spelling errors in human typed

Section 5.5. Applying the Bayesian method to spelling 147

that P O w turns out to be easy to estimate as well. But P O , the probabil-
ity of the observation sequence, turns out to be harder to estimate. Luckily,
we can ignore P O . Why? Since we are maximizing over all words, we will
be computing P O w P w

P O for each word. But P O doesn’t change for each
word; we are always asking about the most likely word string for the same
observation O, which must have the same probability P O . Thus:

ŵ argmax
w V

P O w P w
P O

argmax
w V

P O w P w (5.4)

To summarize, the most probable word w given some observation O
can be computing by taking the product of two probabilities for each word,
and choosing the word for which this product is greatest. These two terms
have names; P w is called the Prior probability, and P O w is called the PRIOR

likelihood. LIKELIHOOD

Key Concept #3. ŵ argmax
w V

likelihood
P O w

prior

P w (5.5)

In the next sections we will show how to compute these two probabili-
ties for the probabilities of pronunciation and spelling.

5.5 APPLYING THE BAYESIAN METHOD TO SPELLING

There are many algorithms for spelling correction; we will focus on the
Bayesian (or noisy channel) algorithm because of its generality. Chapter 6
will show how this algorithm can be extended to model real-word spelling
errors; this section will focus on non-word spelling errors. The noisy chan-
nel approach to spelling correction was first suggested by Kernighan et al.
(1990); their program, correct, takes words rejected by the Unix spell pro-
gram, generates a list of potential correct words, rank them according to
Equation (3), and picks the highest-ranked one.

Let’s walk through the algorithm as it applies to Kernighan et al.’s
(1990) example misspelling acress. The algorithm has two stages: proposing
candidate corrections and scoring the candidates.

In order to propose candidate corrections Kernighan et al. make the
simplifying assumption that the correct word will differ from the misspelling
by a single insertion, deletion, substitution, or transposition. As Damerau’s
(1964) results show, even though this assumption causes the algorithm to
miss some corrections, it should handle most spelling errors in human typed

language model

error model

Decoding

in+possible+ity+s

im+possible+ity+s

im+possibility+s

impossibilities

0

8
u i

5

a 2

s
1d

10

+

9e

3e 4m

i

6u 7t

o

n + 29
u

23

s

14p

11
l

12i 13k

30
e

18
o

15r 16e 17t 31t

19s 20s 21i 22b 28l

24t 25r 26a 27n
g

32

e

g

l

y

37

i
36a

33
n

34e 35s

39

s

l

38

t

c

y

0

@ + m p

1n
2

<n:m>

@ m p
4

+
n

<n:m>

3

+

p

@ + m
n <n:m>

0

@ + e i l t y

1
b

@ + e i t y

b

7l

2

<l:i>

3<e:l> 4<+:i>

5

<i:t>

6

<t:y>

<y:0>

@ + i l t y

b
8

e

@ e i l t y

9
+

b

@ + e l t y

b

10

i

@ + e i l y

b

11

t

@ + e i l t

b

0

@ <+:0>

impossibility
NEG+possible+ity+NOUN+PLURAL

impssblity

Section 5.4. Probabilistic Models 145

recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we need to figure out the correct sequence of letters in the correctly-
spelled word.

NOISY CHANNEL

word
noisy
wordSOURCE

DECODER
guess at
original
word

Figure 5.1 The noisy channel model

The intuition of the noisy channel model (see Figure 5.1) is to treat NOISY
CHANNEL

the surface form (the ‘reduced’ pronunciation or misspelled word) as an in-
stance of the lexical form (the ‘lexical’ pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces ‘noise’ which makes it hard to recognize the ‘true’ word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this ‘true’ word and hence recover it. For the complete speech
recognition tasks, there are many sources of ‘noise’; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the
channel (microphones, telephone networks, etc). Since this chapter focuses
on pronunciation, what we mean by ‘noise’ here is the variation in pronun-
ciation that masks the lexical or ‘canonical’ pronunciation; the other sources
of noise in a speech recognition system will be discussed in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
mask the correct spelling of the word. The metaphor of the noisy channel
comes from the application of the model to speech recognition in the IBM
labs in the 70’s (Jelinek, 1976). But the algorithm itself is a special case of
Bayesian inference and as such has been known since the work of Bayes BAYESIAN

(1763). Bayesian inference or Bayesian classification was applied success-
fully to language problems as early as the late 1950’s, including the OCR
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace
(1964) on applying Bayesian inference to determine the authorship of the
Federalist papers.

In Bayesian classification, as in any classification task, we are given
some observation and our job is to determine which of a set of classes it

Decoding

impossibilities

impossibilityNEG+possible+ity+NOUN+PLURAL

impssblity

Section 5.4. Probabilistic Models 145

recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we need to figure out the correct sequence of letters in the correctly-
spelled word.

NOISY CHANNEL

word
noisy
wordSOURCE

DECODER
guess at
original
word

Figure 5.1 The noisy channel model

The intuition of the noisy channel model (see Figure 5.1) is to treat NOISY
CHANNEL

the surface form (the ‘reduced’ pronunciation or misspelled word) as an in-
stance of the lexical form (the ‘lexical’ pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces ‘noise’ which makes it hard to recognize the ‘true’ word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this ‘true’ word and hence recover it. For the complete speech
recognition tasks, there are many sources of ‘noise’; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the
channel (microphones, telephone networks, etc). Since this chapter focuses
on pronunciation, what we mean by ‘noise’ here is the variation in pronun-
ciation that masks the lexical or ‘canonical’ pronunciation; the other sources
of noise in a speech recognition system will be discussed in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
mask the correct spelling of the word. The metaphor of the noisy channel
comes from the application of the model to speech recognition in the IBM
labs in the 70’s (Jelinek, 1976). But the algorithm itself is a special case of
Bayesian inference and as such has been known since the work of Bayes BAYESIAN

(1763). Bayesian inference or Bayesian classification was applied success-
fully to language problems as early as the late 1950’s, including the OCR
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace
(1964) on applying Bayesian inference to determine the authorship of the
Federalist papers.

In Bayesian classification, as in any classification task, we are given
some observation and our job is to determine which of a set of classes it

non-probabilistic
changes

probabilistic
changes (errors)

Morphology/
phonology

de
co

de

Decoding/speech processing

impossibilities

NEG+possible+ity+NOUN+PLURAL

Section 5.4. Probabilistic Models 145

recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols representing
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we need to figure out the correct sequence of letters in the correctly-
spelled word.

NOISY CHANNEL

word
noisy
wordSOURCE

DECODER
guess at
original
word

Figure 5.1 The noisy channel model

The intuition of the noisy channel model (see Figure 5.1) is to treat NOISY
CHANNEL

the surface form (the ‘reduced’ pronunciation or misspelled word) as an in-
stance of the lexical form (the ‘lexical’ pronunciation or correctly-spelled
word) which has been passed through a noisy communication channel. This
channel introduces ‘noise’ which makes it hard to recognize the ‘true’ word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this ‘true’ word and hence recover it. For the complete speech
recognition tasks, there are many sources of ‘noise’; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the
channel (microphones, telephone networks, etc). Since this chapter focuses
on pronunciation, what we mean by ‘noise’ here is the variation in pronun-
ciation that masks the lexical or ‘canonical’ pronunciation; the other sources
of noise in a speech recognition system will be discussed in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
mask the correct spelling of the word. The metaphor of the noisy channel
comes from the application of the model to speech recognition in the IBM
labs in the 70’s (Jelinek, 1976). But the algorithm itself is a special case of
Bayesian inference and as such has been known since the work of Bayes BAYESIAN

(1763). Bayesian inference or Bayesian classification was applied success-
fully to language problems as early as the late 1950’s, including the OCR
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace
(1964) on applying Bayesian inference to determine the authorship of the
Federalist papers.

In Bayesian classification, as in any classification task, we are given
some observation and our job is to determine which of a set of classes it

non-probabilistic
changes

probabilistic
changes

Morphology/
phonology

de
co

de

decoding is a problem

Probabilistic automata

Figure 4: A simple weighted automaton encoding four possible pronunciations of
the word about and associating a weight to each.

p([@baUt]) = 0.336 (0.84⇥ 1⇥ 1⇥ 0.4⇥ 1)
p([@baU]) = 0.504 (0.84⇥ 1⇥ 1⇥ 0.6)
p([baUt]) = 0.064 (0.16⇥ 1⇥ 0.4⇥ 1)
p([baU]) = 0.096 (0.16⇥ 1⇥ 0.6)

4.1 Different weight structures
We need not restrict ourselves to interpreting the weights as probabilities only. In
fact, raw probability values are rarely used in natural language processing because
of numerical problems in calculations as numbers become very small, and because
multiplication is a relatively slow operation compared to addition. Instead, nega-
tive log probabilities are preferred. To use negative logarithms of probabilities in
weighted automata, we need to change the rules of interpretation of the weights
along and across paths. Instead of multiplying the weight values along the path,
we now need to add them. And instead of adding the value of parallel paths with
the same input, we need to calculate �log(e�x + e�y) for two parallel paths. In
subsequent examples we assume that the natural logarithm is used.

The possibility of defining varying behavior and interpretations of a weighted
automaton model can be generalized further. As long as we follow some rules of
consistency, we can define a number of different systems for combining weight
values along a path and weight values across a path, yielding new models that
associate strings with costs. The “costs” need not even be numbers—we can even
construct systems where the costs are strings, or abstract data structures.

To define a new weight structure, we must specify the operation with which
we combine the weights along a path. This is called the abstract multiplication
operation, denoted by the symbol ⌦—which, for example, can be regular multi-
plication, as it is in the probability case above, or standard addition, as it is in the

9

Intuition

- define probability distributions over
strings

- symbols have transition probabilities
- states have final/halting probabilities
- probabilities are multiplied along paths
- probabilities are summed for several

parallel paths

Probabilistic automata

Figure 4: A simple weighted automaton encoding four possible pronunciations of
the word about and associating a weight to each.

p([@baUt]) = 0.336 (0.84⇥ 1⇥ 1⇥ 0.4⇥ 1)
p([@baU]) = 0.504 (0.84⇥ 1⇥ 1⇥ 0.6)
p([baUt]) = 0.064 (0.16⇥ 1⇥ 0.4⇥ 1)
p([baU]) = 0.096 (0.16⇥ 1⇥ 0.6)

4.1 Different weight structures
We need not restrict ourselves to interpreting the weights as probabilities only. In
fact, raw probability values are rarely used in natural language processing because
of numerical problems in calculations as numbers become very small, and because
multiplication is a relatively slow operation compared to addition. Instead, nega-
tive log probabilities are preferred. To use negative logarithms of probabilities in
weighted automata, we need to change the rules of interpretation of the weights
along and across paths. Instead of multiplying the weight values along the path,
we now need to add them. And instead of adding the value of parallel paths with
the same input, we need to calculate �log(e�x + e�y) for two parallel paths. In
subsequent examples we assume that the natural logarithm is used.

The possibility of defining varying behavior and interpretations of a weighted
automaton model can be generalized further. As long as we follow some rules of
consistency, we can define a number of different systems for combining weight
values along a path and weight values across a path, yielding new models that
associate strings with costs. The “costs” need not even be numbers—we can even
construct systems where the costs are strings, or abstract data structures.

To define a new weight structure, we must specify the operation with which
we combine the weights along a path. This is called the abstract multiplication
operation, denoted by the symbol ⌦—which, for example, can be regular multi-
plication, as it is in the probability case above, or standard addition, as it is in the

9

Intuition

PART II - Weighted
automata

Probabilistic automaton (distribution over strings):

Aside: HMMs and prob. automata

2004 Links between PA and HMMs

Transformation of a HMMT into an equivalent HMM (1)

0.7

0.4 0.6

0.90.1 0.3
[a 0.2]
[b 0.8]

[a 0.8]
[b 0.2]

[a 0.9]
[b 0.1]

[a 0.3]
[b 0.7]

1 2 �

0.1

0.7 0.3

0.9

[a 0.3]
[b 0.7]

[a 0.2]
[b 0.8]

[a 0.8]
[b 0.2]

[a 0.9]
[b 0.1]

0.04 0.36

0.42 0.18

0.7

0.9
0.1 0.3

11 12

21 22

Q� = {(q, q�) � Q�Q|A(q, q�) > 0}. The states of Q� represents pairs of states in
Q that are connected by a strictly positive transition probability (� |Q�| = O(|Q2|))

A((q, q�), (q��, q���)) =
�

A(q��, q���) if q� = q��

0 otherwise.

B((q, q�), a) = B(q, a, q�)

��((q, q�)) = �(q)A(q, q�)
Pierre Dupont 16

2004 Links between PA and HMMs

Transformation of a HMMT into an equivalent HMM (2)

0.7

0.4 0.6

0.90.1 0.3
[a 0.2]
[b 0.8]

[a 0.8]
[b 0.2]

[a 0.9]
[b 0.1]

[a 0.3]
[b 0.7]

1 2 �

0.344 0.27

0.270.116

0.02

0.27

0.27

0.030.08

0.27

0.56

0.030.02 0.08

1a 2a

1b 2b

[a 1]
[b 0]

[a 1]
[b 0]

[a 0]
[b 1]

[a 0]
[b 1]

0.14

0.63

0.14

0.27
0.56

0.63

Q� = Q� �� |Q�| = O(|Q|� |�|)

��((q, a)) =
�

q��Q �(q�)A(q�, q)B(q�, a, q)

B�((q, a), x) = 1 if x = a, and 0 otherwise

A�((q, a), (q�, b)) = A(q, q�)B(q, b, q�)

Pierre Dupont 17

2004 Links between PA and HMMs

Transformation of a HMM into an equivalent PNFA

0.1

0.7 0.3

0.9

[a 0.3]
[b 0.7]

[a 0.2]
[b 0.8]

[a 0.8]
[b 0.2]

[a 0.9]
[b 0.1]

0.04 0.36

0.42 0.18

0.7

0.9
0.1 0.3

11 12

21 22
�

0.04 0.36

0.42 0.18

11 12

21 22

a 0.09

b 0.21

b 0.18

b 0.08

a 0.02

a 0.27

b 0.03

b 0.49

a 0.21

a 0.72

b 0.72

a 0.18

b 0.02 a 0.08

a 0.63

b 0.07

�(q, a, q�) = B(q, a)A(q, q�)

�q, �(q) = 0

Pierre Dupont 18

2004 Links between PA and HMMs

Degrees of freedom

Consider machines (without final probabilities) with n states and an alphabet of m
letters

Model Parameters Degrees of freedom Total
PNFA �(q) n� 1

�(q, a, q�) n2m� n
n2m� 1 O(n2 �m)

HMMT �(q) n� 1
A(q, q�) n2 � n

B(q, a, q�) n2m� n2

n2m� 1 O(n2 �m)
HMM �(q) n� 1

A(q, q�) n2 � n
B(q, a) nm� n

n2 + nm� n� 1 O(n�max(n, m))

A HMM can be transformed into an equivalent PNFA with the same number of
states, but the converse is not true in general.
Pierre Dupont 19

Are equivalent (though automata may be more compact)

Probabilistic automata

from probabilistic to weighted

Weighted automata

Probabilistic automaton:

As always, we would prefer using(negative) logprobs, since this makes
calculations easier:

-log(0.16) ≈ 1.8326

-log(0.84) ≈ 0.1744

-log(1) = 0

-log(0) = ∞

Since the more probable is now numerically smaller, we call them weights

Semirings
Weight Sets: Semirings

A semiring (K,⊕,⊗, 0, 1) = a ring that may lack negation.

• Sum: to compute the weight of a sequence (sum of the weights of the paths

labeled with that sequence).

• Product: to compute the weight of a path (product of the weights of con-

stituent transitions).

Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1

Probability R+ + × 0 1

Log R ∪ {−∞, +∞} ⊕log + +∞ 0

Tropical R ∪ {−∞, +∞} min + +∞ 0

String Σ∗ ∪ {∞} ∧ · ∞ ϵ

⊕log is defined by: x⊕log y = − log(e−x +e−y) and ∧ is longest common prefix.

The string semiring is a left semiring.

OpenFst Part I. Algorithms Preliminaries 2

negative log weights case. The operation for combining values of several different
paths with the same input labels is defined as abstract addition, and denoted by �.

A complete system for defining the behavior of a weighted automaton is usu-
ally encoded in a structure called a semiring. Without going into too much math-
ematical detail, this entails defining five parameters: (S,�,⌦, 0, 1). Here, S is
the set over which we operate (called the carrier set), which, for example, is the
set of real numbers R if we are dealing with probabilities—i.e. working with the
probability semiring—as in the introductory examples above. All possible sums
and products of individual weights need to be members of this set. The operators
� and ⌦ represent the weight combination operations along and across paths: we
multiply (⌦) the weights along paths, and add (�) across paths. Also, the values
0 and 1 (which need to be members of S) are abstract zeroes and ones for the
abstract addition and multiplication operations. In other words, they are identity
elements for � and ⌦ respectively: for all values s in our carrier set S, s � 0
needs to equal s, and s ⌦ 1, also needs to equal s. Also, s ⌦ 0 needs to equal 0.
There are some additional constraints for a semiring algebraic structure—abstract
multiplication (⌦) needs to distribute over addition (�), multiplication needs to
be associative. Put more concisely, the set S together with the zero, one, and ad-
dition and multiplication operations we choose should behave exactly as does the
set of positive real numbers R under ordinary addition and multiplication and the
ordinary zero and one.

Under these requirements, the negative log probability structure discussed pre-
viously is defined as (R[{�1,+1},�

log

,+,+1, 0), reflecting the fact that the
carrier set is the set of real numbers including also plus or minus infinity, abstract
addition is a log plus, abstract multiplication is addition, and the identities are +1
and 0. The �

log

is simply shorthand for the calculation �log(e�x + e�y).
Likewise, the real (or probability) semiring first discussed is defined as:

(R+,+,⇥, 0, 1) (1)

To illustrate this with a further example, let us say we wanted to modify the
negative log probability structure with a maneuver that is very common in natural
language processing applications—to include a Viterbi assumption (Jelinek, 1998)
in the structure. This is the assumption common with hidden Markov model cal-
culations, where we approximate the resulting weight value of all possible paths
given some input string by calculating only the best path matching that string. In
such a way, we would avoid summing all the resulting values of all the paths. This
behavior can be encoded in the semiring

10

negative log weights case. The operation for combining values of several different
paths with the same input labels is defined as abstract addition, and denoted by �.

A complete system for defining the behavior of a weighted automaton is usu-
ally encoded in a structure called a semiring. Without going into too much math-
ematical detail, this entails defining five parameters: (S,�,⌦, 0, 1). Here, S is
the set over which we operate (called the carrier set), which, for example, is the
set of real numbers R if we are dealing with probabilities—i.e. working with the
probability semiring—as in the introductory examples above. All possible sums
and products of individual weights need to be members of this set. The operators
� and ⌦ represent the weight combination operations along and across paths: we
multiply (⌦) the weights along paths, and add (�) across paths. Also, the values
0 and 1 (which need to be members of S) are abstract zeroes and ones for the
abstract addition and multiplication operations. In other words, they are identity
elements for � and ⌦ respectively: for all values s in our carrier set S, s � 0
needs to equal s, and s ⌦ 1, also needs to equal s. Also, s ⌦ 0 needs to equal 0.
There are some additional constraints for a semiring algebraic structure—abstract
multiplication (⌦) needs to distribute over addition (�), multiplication needs to
be associative. Put more concisely, the set S together with the zero, one, and ad-
dition and multiplication operations we choose should behave exactly as does the
set of positive real numbers R under ordinary addition and multiplication and the
ordinary zero and one.

Under these requirements, the negative log probability structure discussed pre-
viously is defined as (R[{�1,+1},�

log

,+,+1, 0), reflecting the fact that the
carrier set is the set of real numbers including also plus or minus infinity, abstract
addition is a log plus, abstract multiplication is addition, and the identities are +1
and 0. The �

log

is simply shorthand for the calculation �log(e�x + e�y).
Likewise, the real (or probability) semiring first discussed is defined as:

(R+,+,⇥, 0, 1) (1)

To illustrate this with a further example, let us say we wanted to modify the
negative log probability structure with a maneuver that is very common in natural
language processing applications—to include a Viterbi assumption (Jelinek, 1998)
in the structure. This is the assumption common with hidden Markov model cal-
culations, where we approximate the resulting weight value of all possible paths
given some input string by calculating only the best path matching that string. In
such a way, we would avoid summing all the resulting values of all the paths. This
behavior can be encoded in the semiring

10

= s= s
=

negative log weights case. The operation for combining values of several different
paths with the same input labels is defined as abstract addition, and denoted by �.

A complete system for defining the behavior of a weighted automaton is usu-
ally encoded in a structure called a semiring. Without going into too much math-
ematical detail, this entails defining five parameters: (S,�,⌦, 0, 1). Here, S is
the set over which we operate (called the carrier set), which, for example, is the
set of real numbers R if we are dealing with probabilities—i.e. working with the
probability semiring—as in the introductory examples above. All possible sums
and products of individual weights need to be members of this set. The operators
� and ⌦ represent the weight combination operations along and across paths: we
multiply (⌦) the weights along paths, and add (�) across paths. Also, the values
0 and 1 (which need to be members of S) are abstract zeroes and ones for the
abstract addition and multiplication operations. In other words, they are identity
elements for � and ⌦ respectively: for all values s in our carrier set S, s � 0
needs to equal s, and s ⌦ 1, also needs to equal s. Also, s ⌦ 0 needs to equal 0.
There are some additional constraints for a semiring algebraic structure—abstract
multiplication (⌦) needs to distribute over addition (�), multiplication needs to
be associative. Put more concisely, the set S together with the zero, one, and ad-
dition and multiplication operations we choose should behave exactly as does the
set of positive real numbers R under ordinary addition and multiplication and the
ordinary zero and one.

Under these requirements, the negative log probability structure discussed pre-
viously is defined as (R[{�1,+1},�

log

,+,+1, 0), reflecting the fact that the
carrier set is the set of real numbers including also plus or minus infinity, abstract
addition is a log plus, abstract multiplication is addition, and the identities are +1
and 0. The �

log

is simply shorthand for the calculation �log(e�x + e�y).
Likewise, the real (or probability) semiring first discussed is defined as:

(R+,+,⇥, 0, 1) (1)

To illustrate this with a further example, let us say we wanted to modify the
negative log probability structure with a maneuver that is very common in natural
language processing applications—to include a Viterbi assumption (Jelinek, 1998)
in the structure. This is the assumption common with hidden Markov model cal-
culations, where we approximate the resulting weight value of all possible paths
given some input string by calculating only the best path matching that string. In
such a way, we would avoid summing all the resulting values of all the paths. This
behavior can be encoded in the semiring

10

negative log weights case. The operation for combining values of several different
paths with the same input labels is defined as abstract addition, and denoted by �.

A complete system for defining the behavior of a weighted automaton is usu-
ally encoded in a structure called a semiring. Without going into too much math-
ematical detail, this entails defining five parameters: (S,�,⌦, 0, 1). Here, S is
the set over which we operate (called the carrier set), which, for example, is the
set of real numbers R if we are dealing with probabilities—i.e. working with the
probability semiring—as in the introductory examples above. All possible sums
and products of individual weights need to be members of this set. The operators
� and ⌦ represent the weight combination operations along and across paths: we
multiply (⌦) the weights along paths, and add (�) across paths. Also, the values
0 and 1 (which need to be members of S) are abstract zeroes and ones for the
abstract addition and multiplication operations. In other words, they are identity
elements for � and ⌦ respectively: for all values s in our carrier set S, s � 0
needs to equal s, and s ⌦ 1, also needs to equal s. Also, s ⌦ 0 needs to equal 0.
There are some additional constraints for a semiring algebraic structure—abstract
multiplication (⌦) needs to distribute over addition (�), multiplication needs to
be associative. Put more concisely, the set S together with the zero, one, and ad-
dition and multiplication operations we choose should behave exactly as does the
set of positive real numbers R under ordinary addition and multiplication and the
ordinary zero and one.

Under these requirements, the negative log probability structure discussed pre-
viously is defined as (R[{�1,+1},�

log

,+,+1, 0), reflecting the fact that the
carrier set is the set of real numbers including also plus or minus infinity, abstract
addition is a log plus, abstract multiplication is addition, and the identities are +1
and 0. The �

log

is simply shorthand for the calculation �log(e�x + e�y).
Likewise, the real (or probability) semiring first discussed is defined as:

(R+,+,⇥, 0, 1) (1)

To illustrate this with a further example, let us say we wanted to modify the
negative log probability structure with a maneuver that is very common in natural
language processing applications—to include a Viterbi assumption (Jelinek, 1998)
in the structure. This is the assumption common with hidden Markov model cal-
culations, where we approximate the resulting weight value of all possible paths
given some input string by calculating only the best path matching that string. In
such a way, we would avoid summing all the resulting values of all the paths. This
behavior can be encoded in the semiring

10

Semirings

Weighted Automaton/Acceptor

0

1/2a/1

b/4

2

a/2

b/1

3/2

b/1
c/3

b/3

c/5

Probability semiring (R+, +,×, 0, 1) Tropical semiring (R+ ∪ {∞}, min, +,∞, 0)

[[A]](ab) = 14 [[A]](ab) = 4

(1× 1× 2 + 2× 3× 2 = 14) (min(1 + 1 + 2, 3 + 2 + 2) = 4)

OpenFst Part I. Algorithms Preliminaries 3

Formal definition

Definitions: weighted automata (1)
Σ

Σ is an automaton,

Initial output function ,

Output function : Σ ,

Final output function ,

Function : Σ associated with :
.

M.Mohri-M.Riley-R.Sproat Algorithms for Speech Recognition and Language Processing PART I 7

Weighted transducers

Figure 7: A simple weighted transducer representing a pronunciation lexicon
where sequences of phones are mapped to words.

5.1 Properties of weighted machines
The algorithms regarding determinization and minimization do not directly trans-
fer to weighted automata. In fact, not every weighted automaton is determiniz-
able, although all acyclic ones are. With weighted transducers, many operations—
including sequentialization—are only possible with certain weight structures. For
most operations, including sequentialization, the tropical and log semirings are
well-behaved.

6 Regular Expressions
Finite-state machines are almost never constructed “by hand”—that is, by man-
ually defining the states and transitions. Such a method is usually not feasible
except for trivial machines. Depending on the application, FSMs are commonly
either automatically constructed or induced from data, as is the case in many
weighted automaton applications, or else defined through some flavor of regular
expressions.

6.1 Basic regular expressions
We shall here build upon the classical definition of regular expressions and include
transducer construction as well: a regular expression consists of atomic symbols
or symbol pairs (as do the labels on the automata and transducers), a concatena-
tion operation, a Kleene star (⇤) operation (zero or more), and the Boolean union
operation (|). Apart from the atomic symbols, we also have the special symbol

13

Intuition

Weighted transducers

Semirings
Weighted Transducer

0

1/2a:ε/1

2
a:r/3

3/2

b:r/2

b:ε/2
c:s/1

Probability semiring (R+, +,×, 0, 1) Tropical semiring (R+ ∪ {∞}, min, +,∞, 0)

[[T]](ab, r) = 16 [[T]](ab, r) = 5

(1× 2× 2 + 3× 2× 2 = 16) (min(1 + 2 + 2, 3 + 2 + 2) = 5)

OpenFst Part I. Algorithms Preliminaries 4

Weighted transducers

Formal definition
Definitions: transducers (1)

Σ ∆

Finite alphabets Σ and ∆,

Finite set of states ,

Transition function : Σ 2 ,

Output function : Σ Σ ,

set of initial states,

set of final states.

defines a relation:
Σ 2 :

M.Mohri-M.Riley-R.Sproat Algorithms for Speech Recognition and Language Processing PART I 10

Operations on weighted automata

Booleans

Union: Example

0

b/1
1 a/3

a/5

2

b/2

b/6

3 /0a/4

a/3

b/7

0

1 b/5 3

a/3

c/0

2
b/2

c/1

4 b/3a/6 5 /0a/4

0

1
b/5 3

a/3

c/0

2
b/2

c/1

4 b/3a/6 5 /0a/4

6

b/1

7 a/3

a/5

8

b/2

b/6

9 /0

a/4

a/3

b/7

10

ε/0

ε/0

Figure 13: Union of weighted automata (min).

M.Mohri-M.Riley-R.Sproat Algorithms for Speech Recognition and Language Processing PART I 24

Composition

T

x

y

U

z

T ○ U

x

z

Composition

T

x

y

U

z

T ○ U

x

z

Multiplicative ~ p(y|x) p(z|y)

Composition
Composition: Example (2)

0 1 a:a/3 2 b:ε/1 3 c:ε/4 4 d:d/2

0 1 a:d/5 2 :eε /7 3 d:a/6

(0,0) (1,1)a:d/15 (2,2)b:e/7 (3,2)c:ε/4 (4,3)d:a/12

Figure 8: Composition of weighted transducers ().

M.Mohri-M.Riley-R.Sproat Algorithms for Speech Recognition and Language Processing PART I 17

A

B

A o B

DeterminizationDeterminization: Motivation (2)

0

1

which/69.9

2

which/72.9

3

which/77.7

4 which/81.6
5

flights/54.3

6

flights/64

7 flight/72.4

flights/50.2

8

flights/83.8
9

flights/88.2

flight/45.4

flights/79

flights/83.4

flight/43.7

flights/53.5

flights/61.8

10 leave/64.6

11

leaves/67.6

12 leave/70.9

13

leave/73.6

14 leave/82.1

leaves/51.4

leave/54.4

leave/57.7

leaves/60.4

leave/68.9

leave/44.4

leave/47.4

leaves/50.7

leave/53.4

leave/61.9

leave/35.9

leaves/39.2

leave/41.9

leave/31.3

leaves/34.6

leave/37.3

leave/45.8

15 /0

Detroit/106

Detroit/110

Detroit/109

Detroit/102

Detroit/106

Detroit/105

Detroit/99.1

Detroit/103

Detroit/102

Detroit/96.3

Detroit/99.7

Detroit/99.4

Detroit/88.5

Detroit/91.9

Detroit/91.6

Figure 14: Toy language model (16 states, 53 transitions, 162 paths).

M.Mohri-M.Riley-R.Sproat Algorithms for Speech Recognition and Language Processing PART I 26

Language model: 16 states, 53 transitions

Determinization

Same language model: 9 states, 11 transitions

Determinization: Motivation (3)

0 1 which/69.9
2 flights/53.1

3
flight/53.2

4 leave/64.6

5 leaves/62.3

6 leave/63.6

7

leaves/67.6

8 /0

Detroit/103

Detroit/105

Detroit/105

Detroit/101

Figure 15: Determinized language model (9 states, 11 transitions, 4 paths).

M.Mohri-M.Riley-R.Sproat Algorithms for Speech Recognition and Language Processing PART I 27

Minimization

Minimization: Example (2)

0 1 a:0
b:1

d:0

2
a:3

4

b:2

3

c:2

5

c:1

d:4
6

e:3
c:1

7 e:1
d:3 e:2

0 1 a:6
b:7

d:0

2
a:3

4

b:0

3

c:0

5

c:0

d:6 6 e:0

c:1

7 e:0
d:6 e:0

0 1 a:6
b:7

d:0

2

a:3

b:0

3

c:0

d:6
4 e:0

c:1

5 e:0

Figure 24: Minimization of weighted automata (min).

M.Mohri-M.Riley-R.Sproat Algorithms for Speech Recognition and Language Processing PART I 43

by weight pushing

Projection

Composition: Example (2)

0 1 a:a/3 2 b:ε/1 3 c:ε/4 4 d:d/2

0 1 a:d/5 2 :eε /7 3 d:a/6

(0,0) (1,1)a:d/15 (2,2)b:e/7 (3,2)c:ε/4 (4,3)d:a/12

Figure 8: Composition of weighted transducers ().

M.Mohri-M.Riley-R.Sproat Algorithms for Speech Recognition and Language Processing PART I 17

Trivial: just delete at in/out labels

Example application

probabilistic spell checking

cat/0.001

cat/0.001

cxat/0.000035

Language model

Error model

p(w)

p(O|w)

cat/0.000035

cxat/0.000035

Example application

constructing p(w) and p(O|w)

p(w) can be a n-gram language model
converted to a transducer, easily estimated from data

p(O|w) is much more difficult

What’s the probability of confusing “a” with “z”

Is this word-dependent? Context-dependent?

Example application

More complex LM (still unigram)

$LM = (the<3.3123733563043>|

 you<3.40834334278697>|

 i<3.47764362842074>|

 a<3.62151061674717>|

 to<3.74035111367985>|

 and<4.12455498051775>|

 of<4.2521768299548>|

 ...

Unigram model from The Simpsons word frequency list
(http://pastebin.com/anKcMdvk)

Example unigram language model (in
Kleene* weighted FST language)

http://www.kleene-lang.org/

http://www.kleene-lang.org/

Example application

Example: weighted edit
distance

$rep = . ; $ins = "":.; $del = .:""; $chg = .:.-.;

$EM = ($rep<0.0> | $ins<1.0> | $del<1.0> |
$chg<1.0>)*;

errormodel.kl

Simple error model (insertion/deletion/replacements have a weight of one)

Example: weighted edit
distance

$corr = (cxat) _o_$EM _o_ $LM;

// FstType: vector, Semiring: standard, 50 states, 139
arcs, 938 paths, Transducer, Weighted, Closed Sigma

$corr = $^shortestPath((cxat) _o_$EM _o_ $LM);

composition“argmax”

Example application

Example: weighted edit
distance

$rep = . ; $ins = "":.; $del = .:""; $chg = .:.-.;

$EM = ($rep<0.0> | $ins<1.0> | $del<1.0> |
$chg<1.0>)*;

errormodel.kl

Simple error model (insertion/deletion/replacements have a weight of one)

Example: weighted edit
distance

$corr = (cxat) _o_$EM _o_ $LM;

// FstType: vector, Semiring: standard, 50 states, 139
arcs, 938 paths, Transducer, Weighted, Closed Sigma

$corr = $^shortestPath((cxat) _o_$EM _o_ $LM);

composition

= cat

“argmax”

Example application

Example: weighted edit
distance

$rep = . ; $ins = "":.; $del = .:""; $chg = .:.-.;

$EM = ($rep<0.0> | $ins<1.0> | $del<1.0> |
$chg<1.0>)*;

errormodel.kl

Simple error model (insertion/deletion/replacements have a weight of one)

Example: weighted edit
distance

$corr = (cxat) _o_$EM _o_ $LM;

// FstType: vector, Semiring: standard, 50 states, 139
arcs, 938 paths, Transducer, Weighted, Closed Sigma

$corr = $^shortestPath((cxat) _o_$EM _o_ $LM);

composition

= cat

What about ‘home’? Does that get corrected and how?

“argmax”

Speech recognition

2

7LSA 352 Summer 2007

Speech Recognition Architecture

8LSA 352 Summer 2007

The Noisy Channel Model

Search through space of all possible sentences.

Pick the one that is most probable given the
waveform.

9LSA 352 Summer 2007

The Noisy Channel Model (II)

What is the most likely sentence out of all sentences
in the language L given some acoustic input O?

Treat acoustic input O as sequence of individual

observations

O = o1,o2,o3,…,ot

Define a sentence as a sequence of words:

W = w1,w2,w3,…,wn

10LSA 352 Summer 2007

Noisy Channel Model (III)

Probabilistic implication: Pick the highest prob S:

We can use Bayes rule to rewrite this:

Since denominator is the same for each candidate
sentence W, we can ignore it for the argmax:

!

ˆ W = argmax
W "L

P(W | O)

!

ˆ W = argmax
W "L

P(O |W)P(W)!

ˆ W = argmax
W "L

P(O |W)P(W)

P(O)

11LSA 352 Summer 2007

Noisy channel model

!

ˆ W = argmax
W "L

P(O |W)P(W)

likelihood prior

12LSA 352 Summer 2007

The noisy channel model

Ignoring the denominator leaves us with two factors:
P(Source) and P(Signal|Source)

Noisy channel model for ASR

ASR birds-eye view

speech recognitionExample of Recognition Cascade

phones words
A D M

observations
O

Recognition from observations o by composition:

– Observations: s s
1 if s o
0 otherwise

– Acoustic-phone transducer: a p a p
– Pronunciation dictionary: p w p w
– Language model: w w w

Recognition: ŵ argmax
w

o w

M.Mohri-M.Riley-R.Sproat Algorithms for Speech Recognition and Language Processing PART II 81

11

61LSA 352 Summer 2007 62LSA 352 Summer 2007

Evaluation

How to evaluate the word string output by a speech
recognizer?

63LSA 352 Summer 2007

Word Error Rate

Word Error Rate =

100 (Insertions+Substitutions + Deletions)

 Total Word in Correct Transcript

Aligment example:

REF: portable **** PHONE UPSTAIRS last night so

HYP: portable FORM OF STORES last night so

Eval I S S

 WER = 100 (1+2+0)/6 = 50%

64LSA 352 Summer 2007

NIST sctk-1.3 scoring softare:
Computing WER with sclite

http://www.nist.gov/speech/tools/

Sclite aligns a hypothesized text (HYP) (from the recognizer)
with a correct or reference text (REF) (human transcribed)

id: (2347-b-013)

Scores: (#C #S #D #I) 9 3 1 2

REF: was an engineer SO I i was always with **** **** MEN UM and they

HYP: was an engineer ** AND i was always with THEM THEY ALL THAT and they

Eval: D S I I S S

65LSA 352 Summer 2007

Sclite output for error analysis

CONFUSION PAIRS Total (972)

 With >= 1 occurances (972)

 1: 6 -> (%hesitation) ==> on

 2: 6 -> the ==> that

 3: 5 -> but ==> that

 4: 4 -> a ==> the

 5: 4 -> four ==> for

 6: 4 -> in ==> and

 7: 4 -> there ==> that

 8: 3 -> (%hesitation) ==> and

 9: 3 -> (%hesitation) ==> the

 10: 3 -> (a-) ==> i

 11: 3 -> and ==> i

 12: 3 -> and ==> in

 13: 3 -> are ==> there

 14: 3 -> as ==> is

 15: 3 -> have ==> that

 16: 3 -> is ==> this

66LSA 352 Summer 2007

Sclite output for error analysis

17: 3 -> it ==> that

 18: 3 -> mouse ==> most

 19: 3 -> was ==> is

 20: 3 -> was ==> this

 21: 3 -> you ==> we

 22: 2 -> (%hesitation) ==> it

 23: 2 -> (%hesitation) ==> that

 24: 2 -> (%hesitation) ==> to

 25: 2 -> (%hesitation) ==> yeah

 26: 2 -> a ==> all

 27: 2 -> a ==> know

 28: 2 -> a ==> you

 29: 2 -> along ==> well

 30: 2 -> and ==> it

 31: 2 -> and ==> we

 32: 2 -> and ==> you

 33: 2 -> are ==> i

 34: 2 -> are ==> were 11

61LSA 352 Summer 2007 62LSA 352 Summer 2007

Evaluation

How to evaluate the word string output by a speech
recognizer?

63LSA 352 Summer 2007

Word Error Rate

Word Error Rate =

100 (Insertions+Substitutions + Deletions)

 Total Word in Correct Transcript

Aligment example:

REF: portable **** PHONE UPSTAIRS last night so

HYP: portable FORM OF STORES last night so

Eval I S S

 WER = 100 (1+2+0)/6 = 50%

64LSA 352 Summer 2007

NIST sctk-1.3 scoring softare:
Computing WER with sclite

http://www.nist.gov/speech/tools/

Sclite aligns a hypothesized text (HYP) (from the recognizer)
with a correct or reference text (REF) (human transcribed)

id: (2347-b-013)

Scores: (#C #S #D #I) 9 3 1 2

REF: was an engineer SO I i was always with **** **** MEN UM and they

HYP: was an engineer ** AND i was always with THEM THEY ALL THAT and they

Eval: D S I I S S

65LSA 352 Summer 2007

Sclite output for error analysis

CONFUSION PAIRS Total (972)

 With >= 1 occurances (972)

 1: 6 -> (%hesitation) ==> on

 2: 6 -> the ==> that

 3: 5 -> but ==> that

 4: 4 -> a ==> the

 5: 4 -> four ==> for

 6: 4 -> in ==> and

 7: 4 -> there ==> that

 8: 3 -> (%hesitation) ==> and

 9: 3 -> (%hesitation) ==> the

 10: 3 -> (a-) ==> i

 11: 3 -> and ==> i

 12: 3 -> and ==> in

 13: 3 -> are ==> there

 14: 3 -> as ==> is

 15: 3 -> have ==> that

 16: 3 -> is ==> this

66LSA 352 Summer 2007

Sclite output for error analysis

17: 3 -> it ==> that

 18: 3 -> mouse ==> most

 19: 3 -> was ==> is

 20: 3 -> was ==> this

 21: 3 -> you ==> we

 22: 2 -> (%hesitation) ==> it

 23: 2 -> (%hesitation) ==> that

 24: 2 -> (%hesitation) ==> to

 25: 2 -> (%hesitation) ==> yeah

 26: 2 -> a ==> all

 27: 2 -> a ==> know

 28: 2 -> a ==> you

 29: 2 -> along ==> well

 30: 2 -> and ==> it

 31: 2 -> and ==> we

 32: 2 -> and ==> you

 33: 2 -> are ==> i

 34: 2 -> are ==> were

11

61LSA 352 Summer 2007 62LSA 352 Summer 2007

Evaluation

How to evaluate the word string output by a speech
recognizer?

63LSA 352 Summer 2007

Word Error Rate

Word Error Rate =

100 (Insertions+Substitutions + Deletions)

 Total Word in Correct Transcript

Aligment example:

REF: portable **** PHONE UPSTAIRS last night so

HYP: portable FORM OF STORES last night so

Eval I S S

 WER = 100 (1+2+0)/6 = 50%

64LSA 352 Summer 2007

NIST sctk-1.3 scoring softare:
Computing WER with sclite

http://www.nist.gov/speech/tools/

Sclite aligns a hypothesized text (HYP) (from the recognizer)
with a correct or reference text (REF) (human transcribed)

id: (2347-b-013)

Scores: (#C #S #D #I) 9 3 1 2

REF: was an engineer SO I i was always with **** **** MEN UM and they

HYP: was an engineer ** AND i was always with THEM THEY ALL THAT and they

Eval: D S I I S S

65LSA 352 Summer 2007

Sclite output for error analysis

CONFUSION PAIRS Total (972)

 With >= 1 occurances (972)

 1: 6 -> (%hesitation) ==> on

 2: 6 -> the ==> that

 3: 5 -> but ==> that

 4: 4 -> a ==> the

 5: 4 -> four ==> for

 6: 4 -> in ==> and

 7: 4 -> there ==> that

 8: 3 -> (%hesitation) ==> and

 9: 3 -> (%hesitation) ==> the

 10: 3 -> (a-) ==> i

 11: 3 -> and ==> i

 12: 3 -> and ==> in

 13: 3 -> are ==> there

 14: 3 -> as ==> is

 15: 3 -> have ==> that

 16: 3 -> is ==> this

66LSA 352 Summer 2007

Sclite output for error analysis

17: 3 -> it ==> that

 18: 3 -> mouse ==> most

 19: 3 -> was ==> is

 20: 3 -> was ==> this

 21: 3 -> you ==> we

 22: 2 -> (%hesitation) ==> it

 23: 2 -> (%hesitation) ==> that

 24: 2 -> (%hesitation) ==> to

 25: 2 -> (%hesitation) ==> yeah

 26: 2 -> a ==> all

 27: 2 -> a ==> know

 28: 2 -> a ==> you

 29: 2 -> along ==> well

 30: 2 -> and ==> it

 31: 2 -> and ==> we

 32: 2 -> and ==> you

 33: 2 -> are ==> i

 34: 2 -> are ==> were

(MFCCs)

[ɪf]/0.0001 if/0.000034 if/0.0000045

Slightly more detail
Speech Models as Weighted Automata

Quantized observations:

on. . .t1 t2t0
o1 o2 tn

Phone model : observations phones
oi:ε/p01(i) ε:π/p2f

...

... ...

... ...

oi:ε/p12(i)

oi:ε/p00(i) oi:ε/p11(i) oi:ε/p22(i)

s0 s1 s2

Acoustic transducer:

Word pronunciations data : phones words

d:ε/1 ey:ε/.4

ae:ε/.6

dx:ε/.8

t:ε/.2

ax:"data"/1

Dictionary:

M.Mohri-M.Riley-R.Sproat Algorithms for Speech Recognition and Language Processing PART II 82

