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= More on HMMs

= Review statistical POS tagging

= 3 HMM problems and algorithms

= Decoding (Viterbi)
= Forward/Backward
= EM, (Forward-Backward or Baum-Welch)
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Getting to HMMs

= This equation gives us the best tag
seguence

{1 = argmax P(t]|w/)
"

= But how to make it operational?
= How to efficiently perform this computation?

= Intuition of Bayesian inference:

= Use Bayes rule to transform this equation into
a generative model
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"~ Using BayesRule

Plyl)P(x)
P(y)

i _ P(wil)P (1)

[l = argt?lax P

P(x]y) =

i1 = argmax P(w!}|11)P(1])
f
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Likelihood and Prior

likelihood prior

~ HP(wl. l)
i=1
n
[1P@t-1)
=1
] = argmax P(1{|w]) ~ argmaxHP (wit;) P(t]ti—1)
i 1 i—1
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Two Kinds of Probabilities

= Tag transition probabilities p(t;|t;_,)
= Determiners likely to precede adjs and nouns
= That/DT flight/NN
= The/DT yellow/1] hat/NN
= So we expect P(NN|DT) and P(JJ|DT) to be high, but
P(DT|JJ) to be low

= Compute P(NN|DT) by counting in a labeled

COrpus: C(t;_1.1;
C(li_l)

C(DT,NN) 56,509 4
C(DT) 116,454
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Two Kinds of Probabilities

= Word likelihood probabilities p(w;|t))
= \V/BZ (3sg Pres verb) likely to be “is”
= Compute P(is|VBZ) by counting in a labeled

Corpus:
C(Zi.\/Vi)
P(wilt;) = —2
(Wl‘l) C([,’)
C(VBZ.,i 10,073
plis|vBz) — SVBZ:1s) 10,073

C(VBZ) 21,627
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Transition Probabilities

dy
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2/10/15

Observation Likelihoods

2
P(“aardvark” | TO)

P(“race” | TO)
5
P(“t0” | TO)

(
(“the” | TO)
(
P(“zebra” | TO)

P(“aardvark” | VB)
P(“race” | VB)
5

(
(the” | VB)
P(“to” | VB)

P(“zebra” | VB)
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P(“aardvark” | NN)

P(“race” | NN)

P(“the” | NN)
P(“to” | NN)

P(“zebra” | NN)




S
Question

= If there are 30 or so tags in the Penn set

= And the average sentence is around 20
words...

= How many tag sequences do we have to
enumerate argmax over?

3020
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Hidden Markov Models

= States Q=q,, q,...qx.
Observations O= o, 0,...0y.
= Each observation is a symbol from a vocabulary V = {v,,v,,...

vy
= Transition probabilities
= Transition probability matrix A = {a;}
a,=P(g,=jlg_ =i 1<ijsN
Observation likelihoods
= QOutput probability matrix B={b,(k)}

b.(k)=P(X,=o0,1q, =1)

= Special initial probability vector n
w,=P(q =1 l=sisN
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3 Problems

= Given this framework there are 3 problems
that we can pose to an HMM

= Given an observation sequence, what is the
probability of that sequence given a model?

= Given an observation sequence and a model,
what is the most likely state sequence?

= Given an observation sequence, infer the best
model parameters for a skeletal model
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S
Problem 1

= The probability of a sequence given a model...

Computing Likelihood: Given an HMM A = (A, B) and an observation
sequence O, determine the likelihood P(O|A ).

= Used in model development... How do I know if some
change I made to the model is making it better

= And in classification tasks

= Word spotting in ASR, language identification, speaker
identification, author identification, etc.
= Train one HMM model per class
= Given an observation, pass it to each model and compute P(seq|model).
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e
Problem 2

= Most probable state sequence given a model and
an observation sequence

Decoding: Given as input an HMM A = (A,B) and a sequence of ob-
servations O = 01,03, ...,07, find the most probable sequence of states

Q=0q192q93 .. .4T.

= Typically used in tagging problems, where the tags
correspond to hidden states

= As we’ |l see almost any problem can be cast as a sequence
labeling problem

= Viterbi solves problem 2
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Problem 3

= Infer the best model parameters, given a
skeletal model and an observation
sequence...
= That is, fill in the A and B tables with the right

numbers...

= The numbers that make the observation sequence
most likely

= Useful for getting an HMM without having to
hire annotators...

= That is you tell me how many tags there are and
give me a boatload of untagged text, and I give
you back a part of speech tagger.
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!OIU!IOI‘IS

= Problem 2: Viterbi
= Problem 1: Forward

= Problem 3: Forward-Backward
= An instance of EM
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e
Problem 2: Decoding

= Ok, now we have a complete model that can give us
what we need. Recall that we need to get

{1 = argmax P(t} |w7})
f

= We could just enumerate all paths given the input and
use the model to assign probabilities to each.

= Not a good idea.
= Luckily dynamic programming helps us here
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Intuition

= You're interested in the shortest distance
from Boulder to Moab

= Consider a possible location on the way to
Moab, say Glenwood Springs.

= What do you need to know about all the
different possible ways to get to Glenwood
Springs? | The best way (the shortest path)
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Intuition

= Consider a state sequence (tag sequence)
that ends at state j (i.e., has a particular
tag T at the end)

= The probability of that tag sequence can
be broken into parts

= The probability of the BEST tag sequence up
through j-1

= Multiplied by the transition probability from
the tag at the end of the j-1 sequence to T.

= And the observation probability of the
observed word given tag T
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S
The Viterbi Algorithm

function VITERBI(observations of len T,state-graph of len N) returns best-path

create a path probability matrix viterbi/N+2,T]

for each state s from 1 to N do : initialization step
viterbi[s,1]«—aq s * bs(01)
backpointer(s,1] 0

for each time step  from 2 to T do ; recursion step

for each state s from 1 to N do
) ) N i )
viterbi[s,t] < max viterbi[s'.t — 1] * ay s * bs(or)

s =1

. N : :
backpointer[s,t] — argmax viterbi[s',t — 1] * ay

s'=1
. . N : : L
viterbi[qr  T]+— max viterbi[s,T] * a4, ; termination step
s=1 '
. N : . N
backpointer[qr, T]+ argmax viterbi[s,T] * a4, ; termination step
s=1

return the backtrace path by following backpointers to states back in time from
backpointer[qr.T ]
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Viterbi Summary

= Create an array
= With columns corresponding to inputs
= Rows corresponding to possible states

= Sweep through the array in one pass
filling the columns left to right using our
transition probs and observations probs

= Dynamic programming key is that we need
only store the MAX prob and path to each
cell, (not all paths).
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S
Evaluation

= S0 once you have you POS tagger running
how do you evaluate it?
= Overall error rate with respect to a gold-

standard test set

= Each token gets a tag, so overall accuracy is a
decent measure (number correct/number tagged)

= But to improve a system we want more
detailed information
= Per word accuracy
= Confusion matrices
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Evaluation

= Results are compared with a manually
coded “Gold Standard”

= Typically accuracy reaches 96-97%

= This may be compared with result for a
baseline tagger (one that uses no context)

= Important: 100% accuracy is impossible
even for human annotators
= Goal is to get system performance near to

human performance

= Beware of claims from systems that claim to
exceed the accuracy of human annotators
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Detailed Error Analysis

= ook at a confusion matrix
IN JJ NN NNP RB VBD VBN
2

IN — .2 )

JJ 2 — 33 21 1.7 .2 2.7
NN 8.7 — 2
NNP 2 33 41 — 2

RB 22 20 5 -

VBD 3 5 - 4.4
VBN 2.8 2.6 -

= See what errors are causing problems
= Noun (NN) vs ProperNoun (NNP) vs Adj (J])
= Preterite (VBD) vs Participle (VBN) vs Adjective (1J)
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Problem 1: Forward

= Given an observation sequence return the
probability of the sequence given the
model...

= Well in a normal Markov model, the states
and the sequences are identical... So the
probability of a sequence is the probability of
the path sequence

= But not in an HMM... Remember that any
number of sequences might be responsible for
any given observation sequence.

2/10/15 Speech and Language Processing - Jurafsky and Martin
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e
Forward

= Efficiently computes the probability of an
observed sequence given a model

= P(sequence|model)

= Nearly identical to Viterbi; replace the MAX
with a SUM
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function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]

for each state s from 1 to N do ; initialization step
forward[s,1]«—aq s * bs(o1)
for each time step 7 from 2 to 7' do ; Tecursion step
for each state s from 1 to N do
N
forward([s,t] Z forward[s';t — 1] = ag 5 * bs(o;)
s'=1
N
forward[qr ,T]— Z forward[s,T| * as gz ; termination step

s=1
return forward|qr.T |
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~ Problem 3: Learning the
Parameters

= First an example to get the intuition down
= We'll do Forward-Backward next time
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Urn Example

= A genie has two urns filled with red and
blue balls. The genie selects an urn and
then draws a ball from it (and replaces it).
The genie then selects either the same urn
or the other one and then selects another

ball...
= The urns and actual draws are hidden

= The balls are observed
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e
urn

= Based on the results of a long series of
draws...
= Figure out the distribution of colors of balls in

each urn
= Observation probabilities (B table)

= Figure out the genie’s preferences for going
from one urn to the next

* Transition probabilities (A table)
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S
Urns and Balls

= Pi: Un1: 0.9, Umn 2: 0.1

2/10/15

" A Un1l |[Umn 2
Urn 1 0.6 0.4
Urn 2 0.3 0.7

= B
Un1l [Urn?2
Red 0.7 0.4
Blue 0.3 0.6

Speech and Language Processing - Jurafsky and Martin
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Urns and Balls

= Let’ s assume the input

(observables) is Blue Blue
Red (BBR) How many paths are there?

= Since both urns contain
red and blue balls

any path of length 3
through this machine

could produce this output
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Urns and Balls

Blue Blue Red

111

(0.9%0.3)*(0.6%0.3)*(0.6*0.7)=0.0204

112

(0.9%0.3)*(0.6%0.3)*(0.4*%0.4)=0.0077

121

(0.9%0.3)*(0.4*0.6)*(0.3*%0.7)=0.0136

122

(0.9%0.3)*(0.4*0.6)*(0.7*0.4)=0.0181

211

(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052

212

(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020

221

(0.1*0.6)*(0.7*%0.6)*(0.3%0.7)=0.0052

222

(0.1%0.6)*(0.7*0.6)*(0.7*%0.4)=0.0070

2/10/15
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Viterbi:

Urns and Balls

Says 111 is the most likely state sequence

111

(0.9%0.3)*(0.6*0.3)*(0.6%0.7)=0.0204

112

(0.9%0.3)*(0.6%0.3)*(0.4*%0.4)=0.0077

121

(0.9%0.3)*(0.4*0.6)*(0.3*%0.7)=0.0136

122

(0.9%0.3)*(0.4*0.6)*(0.7*0.4)=0.0181

211

(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052

212

(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020

221

(0.1*0.6)*(0.7*%0.6)*(0.3%0.7)=0.0052

222

(0.1%0.6)*(0.7*0.6)*(0.7*%0.4)=0.0070

2/10/15
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Urns and Balls

Forward: P(BBR| model) = .0792 >

111

(0.9%0.3)*(0.6%0.3)*(0.6*0.7)=0.0204

112

(0.9%0.3)*(0.6%0.3)*(0.4*%0.4)=0.0077

121

(0.9%0.3)*(0.4*0.6)*(0.3*%0.7)=0.0136

122

(0.9%0.3)*(0.4*0.6)*(0.7*0.4)=0.0181

211

(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052

212

(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020

221

(0.1*0.6)*(0.7*%0.6)*(0.3%0.7)=0.0052

222

(0.1%0.6)*(0.7*0.6)*(0.7*%0.4)=0.0070

2/10/15
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Urns and Balls

= EM

= What if I told you I lied about the numbers in
the model (Priors,A,B) for this example? That
is, I just made them up.

= Can I get better numbers just from the input
sequence?

2/10/15 Speech and Language Processing - Jurafsky and Martin
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Urns and Balls

= Yup

= Just count up and prorate the number of
times a given transition is traversed while
processing the observations inputs.

= Then use that pro-rated count to re-estimate
the transition probability for that transition
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Urns and Balls

= But... we just saw that don't know the
actual path the input took, its hidden!

= So prorate the counts from all the possible
paths based on the path probabilities the
model gives you

= Basically do what Forward does

= But you said the numbers were wrong

= Doesn’t matter; use the original numbers then
replace the old ones with the new ones.

2/10/15 Speech and Language Processing - Jurafsky and Martin
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Urn !xample

i
4 i ;
/\»
-
3

Let’ s re-estimate the Urnl->Urn2 transition
and the Urnl->Urnl transition (using Blue Blue
Red as training data).

.6
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Urns and Balls

Blue Blue Red

111

(0.9%0.3)*(0.6%0.3)*(0.6*0.7)=0.0204

112

(0.9%0.3)*(0.6%0.3)*(0.4*%0.4)=0.0077

121

(0.9%0.3)*(0.4*0.6)*(0.3*%0.7)=0.0136

122

(0.9%0.3)*(0.4*0.6)*(0.7*0.4)=0.0181

211

(0.1*0.6)*(0.3*0.7)*(0.6%0.7)=0.0052

212

(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020

221

(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052

222

(0.1%0.6)*(0.7*0.6)*(0.7*%0.4)=0.0070

2/10/15
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urns an! Ba"s

= That's
= (.0077*1)+(.0136*1)+(.0181*1)+(.0020*1)
= .0414

= Of course, that’ s not a probability, it needs to be
divided by the probability of leaving Urn 1 total.

= There’ s only one other way out of Urn 1 (going back to
urnl)

= So let’ s reestimate Urn1-> Urnl
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Let’ s re-estimate the Urnl->Urnl transition
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Urns and Balls

Blue Blue Red

111

(0.9%0.3)*(0.6%0.3)*(0.6*0.7)=0.0204

112

(0.9%0.3)*(0.6%0.3)*(0.4*%0.4)=0.0077

121

(0.9*0.3)*(0.4*0.6)*(0.3*0.7)=0.0136

122

(0.9%0.3)*(0.4*0.6)*(0.7*0.4)=0.0181

211

(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052

212

(0.1*0.6)*(0.3*0.7)*(0.4%0.4)=0.0020

221

(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052

222

(0.1%0.6)*(0.7*0.6)*(0.7*%0.4)=0.0070

2/10/15
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o
Urns and Balls

= That' s just
= (2%.0204)+(1*.0077)+(1*.0052) = .0537
= Again not what we need but we’ re

closer... we just need to normalize using
those two numbers.
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Urns and Balls

= The 1->2 transition probability is
.0414/(.0414+.0537) = 0.435

= The 1->1 transition probability is
.0537/(.0414+.0537) = 0.565

= SO in re-estimation the 1->2 transition
went from .4 to .435 and the 1->1
transition went from .6 to .565
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EM Re-estimation

= Not done yet. No reason to think those
values are right. But they're more right
than they used to be.

= So do it again, and again and....

= As with Problems 1 and 2, you wouldn't
actually compute it this way. The Forward-
Backward algorithm re-estimates these
numbers in the same dynamic
programming way that Viterbi and
Forward do.
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