Natural Language Processing

Lecture 9-2/10/2015

Shumin Wu

Today

- More on HMMs
 - Review statistical POS tagging
 - 3 HMM problems and algorithms
 - Decoding (Viterbi)
 - Forward/Backward
 - EM, (Forward-Backward or Baum-Welch)

Getting to HMMs

This equation gives us the best tag sequence

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- But how to make it operational?
 - How to efficiently perform this computation?
- Intuition of Bayesian inference:
 - Use Bayes rule to transform this equation into a generative model

Using Bayes Rule

. .

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} \frac{P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})}{P(w_{1}^{n})}$$

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and Prior

$$\widehat{t_1^n} = \underset{t_1^n}{\operatorname{argmax}} \underbrace{P(w_1^n | t_1^n)}_{P(w_1^n | t_1^n)} \underbrace{P(t_1^n)}_{P(t_1^n)}$$

$$P(w_1^n | t_1^n) \approx \prod_{i=1}^n P(w_i | t_i)$$

$$\widehat{t_1^n} = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

Speech and Language Processing - Jurafsky and Martin

Two Kinds of Probabilities

- Tag transition probabilities p(t_i|t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high, but P(DT|JJ) to be low
 - Compute P(NN|DT) by counting in a labeled corpus: $P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$

$$P(NN|DT) = \frac{C(DT, NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Speech and Language Processing - Jurafsky and Martin

Two Kinds of Probabilities

- Word likelihood probabilities p(w_i|t_i)
 - VBZ (3sg Pres verb) likely to be "is"
 - Compute P(is|VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$
$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Transition Probabilities

Observation Likelihoods

2/10/15

Speech and Language Processing - Jurafsky and Martin

Question

- If there are 30 or so tags in the Penn set
- And the average sentence is around 20 words...
- How many tag sequences do we have to enumerate argmax over?

Hidden Markov Models

- States $Q = q_1, q_2...q_{N;}$
- Observations $O = o_1, o_2...o_{N}$;
 - Each observation is a symbol from a vocabulary V = { $v_1, v_2, ... v_V$ }
- Transition probabilities
 - Transition probability matrix $A = \{a_{ij}\}\ a_{ij} = P(q_t = j \mid q_{t-1} = i) \quad 1 \le i, j \le N$
- Observation likelihoods
 - Output probability matrix B={b_i(k)}

$$b_i(k) = P(X_t = o_k | q_t = i)$$

- Special initial probability vector $\boldsymbol{\pi}$

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

3 Problems

- Given this framework there are 3 problems that we can pose to an HMM
 - Given an observation sequence, what is the probability of that sequence given a model?
 - Given an observation sequence and a model, what is the most likely state sequence?
 - Given an observation sequence, infer the best model parameters for a skeletal model

Problem 1

The probability of a sequence given a model...

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence *O*, determine the likelihood $P(O|\lambda)$.

 Used in model development... How do I know if some change I made to the model is making it better

And in classification tasks

- Word spotting in ASR, language identification, speaker identification, author identification, etc.
 - Train one HMM model per class
 - Given an observation, pass it to each model and compute P(seq|model).

Problem 2

 Most probable state sequence given a model and an observation sequence

Decoding: Given as input an HMM $\lambda = (A,B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1 q_2 q_3 ... q_T$.

- Typically used in tagging problems, where the tags correspond to hidden states
 - As we'll see almost any problem can be cast as a sequence labeling problem
- Viterbi solves problem 2

Problem 3

- Infer the best model parameters, given a skeletal model and an observation sequence...
 - That is, fill in the A and B tables with the right numbers...
 - The numbers that make the observation sequence most likely
 - Useful for getting an HMM without having to hire annotators...
 - That is you tell me how many tags there are and give me a boatload of untagged text, and I give you back a part of speech tagger.

Solutions

- Problem 2: Viterbi
- Problem 1: Forward
- Problem 3: Forward-Backward
 - An instance of EM

Problem 2: Decoding

 Ok, now we have a complete model that can give us what we need. Recall that we need to get

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- We could just enumerate all paths given the input and use the model to assign probabilities to each.
 - Not a good idea.
 - Luckily dynamic programming helps us here

Intuition

- You're interested in the shortest distance from Boulder to Moab
- Consider a possible location on the way to Moab, say Glenwood Springs.
- What do you need to know about all the different possible ways to get to Glenwood Springs? The best way (the shortest path)

Intuition

- Consider a state sequence (tag sequence) that ends at state j (i.e., has a particular tag T at the end)
- The probability of that tag sequence can be broken into parts
 - The probability of the BEST tag sequence up through j-1
 - Multiplied by the transition probability from the tag at the end of the j-1 sequence to T.
 - And the observation probability of the observed word given tag T

Viterbi Example

The Viterbi Algorithm

function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix *viterbi*[N+2,T] for each state s from 1 to N do ; initialization step *viterbi*[*s*,1] $\leftarrow a_{0,s} * b_s(o_1)$ backpointer[s,1] $\leftarrow 0$ for each time step t from 2 to T do ; recursion step for each state s from 1 to N do $viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$ $backpointer[s,t] \leftarrow argmax viterbi[s',t-1] * a_{s',s}$ $viterbi[q_F,T] \leftarrow \max_{n=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $backpointer[q_F,T] \leftarrow argmax viterbi[s,T] * a_{s.a_F}$; termination step return the backtrace path by following backpointers to states back in time from backpointer $[q_F, T]$

Viterbi Summary

Create an array

- With columns corresponding to inputs
- Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob and path to each cell, (not all paths).

Evaluation

- So once you have you POS tagger running how do you evaluate it?
 - Overall error rate with respect to a goldstandard test set
 - Each token gets a tag, so overall accuracy is a decent measure (number correct/number tagged)
 - But to improve a system we want more detailed information
 - Per word accuracy
 - Confusion matrices

Evaluation

- Results are compared with a manually coded "Gold Standard"
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context)
- Important: 100% accuracy is impossible even for human annotators
 - Goal is to get system performance near to human performance
 - Beware of claims from systems that claim to exceed the accuracy of human annotators

Detailed Error Analysis

Look at a confusion matrix

	IN	JJ	NN	NNP	RB	VBD	VBN
IN		.2			.7		
JJ	.2		3.3	2.1	1.7	.2	2.7
NN		8.7	—				.2
NNP	.2	3.3	4.1	—	.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5			_	4.4
VBN		2.8				2.6	_

- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
 - Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Problem 1: Forward

- Given an observation sequence return the probability of the sequence given the model...
 - Well in a normal Markov model, the states and the sequences are identical... So the probability of a sequence is the probability of the path sequence
 - But not in an HMM... Remember that any number of sequences might be responsible for any given observation sequence.

Forward

- Efficiently computes the probability of an observed sequence given a model
 - P(sequence|model)
- Nearly identical to Viterbi; replace the MAX with a SUM

Ice Cream Example

2/10/15

Speech and Language Processing - Jurafsky and Martin

Ice Cream Example

Speech and Language Processing - Jurafsky and Martin

Forward

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T] for each state s from 1 to N do ; initialization step forward[s,1] $\leftarrow a_{0,s} * b_s(o_1)$ for each time step t from 2 to T do ; recursion step for each state s from 1 to N do forward[s,t] $\leftarrow \sum_{s'=1}^{N} forward[s',t-1] * a_{s',s} * b_s(o_t)$ forward[q_F,T] $\leftarrow \sum_{s=1}^{N} forward[s,T] * a_{s,q_F}$; termination step return forward[q_F,T]

Problem 3: Learning the Parameters

- First an example to get the intuition down
- We'll do Forward-Backward next time

Urn Example

- A genie has two urns filled with red and blue balls. The genie selects an urn and then draws a ball from it (and replaces it). The genie then selects either the same urn or the other one and then selects another ball...
 - The urns and actual draws are hidden
 - The balls are observed

Urn

- Based on the results of a long series of draws...
 - Figure out the distribution of colors of balls in each urn
 - Observation probabilities (B table)
 - Figure out the genie's preferences for going from one urn to the next
 - Transition probabilities (A table)

Pi: Urn 1: 0.9; Urn 2: 0.1

• A		Urn 1	Urn 2
	Urn 1	0.6	0.4
	Urn 2	0.3	0.7

B

	Urn 1	Urn 2
Red	0.7	0.4
Blue	0.3	0.6

- Let's assume the input (observables) is Blue Blue Red (BBR)
 How many paths are there?
- Since both urns contain
 red and blue balls
 any path of length 3
 through this machine
 could produce this output

Blue Blue Red

111	(0.9*0.3)*(0.6*0.3)*(0.6*0.7)=0.0204
112	(0.9*0.3)*(0.6*0.3)*(0.4*0.4)=0.0077
121	(0.9*0.3)*(0.4*0.6)*(0.3*0.7)=0.0136
122	(0.9*0.3)*(0.4*0.6)*(0.7*0.4)=0.0181

211	(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052
212	(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020
221	(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052
222	(0.1*0.6)*(0.7*0.6)*(0.7*0.4)=0.0070

Viterbi: Says 111 is the most likely state sequence

111	(0.9*0.3)*(0.6*0.3)*(0.6*0.7)=0.0204
112	(0.9*0.3)*(0.6*0.3)*(0.4*0.4)=0.0077
121	(0.9*0.3)*(0.4*0.6)*(0.3*0.7)=0.0136
122	(0.9*0.3)*(0.4*0.6)*(0.7*0.4)=0.0181

211	(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052
212	(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020
221	(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052
222	(0.1*0.6)*(0.7*0.6)*(0.7*0.4)=0.0070

Forward	d: P(BBR model) = .0792	Σ
111	(0.9*0.3)*(0.6*0.3)*(0.6*0.3)	*0.7)=0.0204
112	(0.9*0.3)*(0.6*0.3)*(0.4)	*0.4)=0.0077
121	(0.9*0.3)*(0.4*0.6)*(0.3*)	*0.7)=0.0136
122	(0.9*0.3)*(0.4*0.6)*(0.7*	*0.4)=0.0181

211	(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052
212	(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020
221	(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052
222	(0.1*0.6)*(0.7*0.6)*(0.7*0.4)=0.0070

EM

- What if I told you I lied about the numbers in the model (Priors,A,B) for this example? That is, I just made them up.
- Can I get better numbers just from the input sequence?

Yup

- Just count up and prorate the number of times a given transition is traversed while processing the observations inputs.
- Then use that pro-rated count to re-estimate the transition probability for that transition

- But... we just saw that don't know the actual path the input took, its hidden!
 - So prorate the counts from all the possible paths based on the path probabilities the model gives you
 - Basically do what Forward does
- But you said the numbers were wrong
 - Doesn't matter; use the original numbers then replace the old ones with the new ones.

Urn Example

Let's re-estimate the Urn1->Urn2 transition and the Urn1->Urn1 transition (using Blue Blue Red as training data).

Blue Blue Red

111	(0.9*0.3)*(0.6*0.3)*(0.6*0.7)=0.0204
112	(0.9*0.3)*(0.6*0.3)*(0.4*0.4)=0.0077
121	(0.9*0.3)*(0.4*0.6)*(0.3*0.7)=0.0136
122	(0.9*0.3)*(0.4*0.6)*(0.7*0.4)=0.0181

211	(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052
212	(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020
221	(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052
222	(0.1*0.6)*(0.7*0.6)*(0.7*0.4)=0.0070

That's

- (.0077*1)+(.0136*1)+(.0181*1)+(.0020*1)
- = .0414
- Of course, that's not a probability, it needs to be divided by the probability of leaving Urn 1 total.
- There's only one other way out of Urn 1 (going back to urn1)
 - So let's reestimate Urn1-> Urn1

Urn Example

Let's re-estimate the Urn1->Urn1 transition

Blue Blue Red

111	(0.9*0.3)*(0.6*0.3)*(0.6*0.7)=0.0204
112	(0.9*0.3)*(0.6*0.3)*(0.4*0.4)=0.0077
121	(0.9*0.3)*(0.4*0.6)*(0.3*0.7)=0.0136
122	(0.9*0.3)*(0.4*0.6)*(0.7*0.4)=0.0181

211	(0.1*0.6)*(0.3*0.7)*(0.6*0.7)=0.0052
212	(0.1*0.6)*(0.3*0.7)*(0.4*0.4)=0.0020
221	(0.1*0.6)*(0.7*0.6)*(0.3*0.7)=0.0052
222	(0.1*0.6)*(0.7*0.6)*(0.7*0.4)=0.0070

- That's just
 - (2*.0204)+(1*.0077)+(1*.0052) = .0537
- Again not what we need but we're closer... we just need to normalize using those two numbers.

- The 1->2 transition probability is .0414/(.0414+.0537) = 0.435
- The 1->1 transition probability is .0537/(.0414+.0537) = 0.565
- So in re-estimation the 1->2 transition went from .4 to .435 and the 1->1 transition went from .6 to .565

EM Re-estimation

- Not done yet. No reason to think those values are right. But they're more right than they used to be.
 - So do it again, and again and....
- As with Problems 1 and 2, you wouldn't actually compute it this way. The Forward-Backward algorithm re-estimates these numbers in the same dynamic programming way that Viterbi and Forward do.