
Fast Approximate String Matching with Finite Automata
Mans Hulden mhulden@email.arizona.edu The University of Arizona /

Helsinki Finite State Technology Research Group
University of Helsinki

The problem
The problem addressed here is a classic search problem:
given a word win not found in a list W , which word in
W most closely resembles win?

This can be costly using standard edit distance calcula-
tions for several reasons:

• If the size of the list W is large, we cannot practi-
cally calculate a ‘distance’ between every word on
the list and our candidate word to find the solution

• The list W may be infinite: we may have a gram-
mar that models unlimited compounding and af-
fixing and thus allows infinitely long words

• We may want to use complex distance metrics to
define the similarity between two words

An alternate formulation
Instead of considering a list W to find approximate
matches for a word win we consider finding the words
in a finite-state automaton A that most closely resemble
win.

Generalizing the problem has a number of potential ad-
vantages:

• Any finite list W can be converted into a determin-
istic finite state automaton

• A finite state automaton can encode an infinite
number of words

• Morphological analyzers are often designed to be
finite-state transducers (FSTs). It is trivial, given
a morphological FST, to extract an automaton that
encodes all the legal words in the language

Applying A∗-search to the problem
We apply the classic A-∗ search algorithm to the problem. In effect, we
match letters in win against arcs in the automatonA taking into account the
possibility of insertion, deletion and substitution. For each step and node
expansion in the search space we recalculate the score f = g + h, where g
is the accumulated cost so far, and h our heuristic guess of the future score.
We maintain nodes in a priority queue and iteratively expand the one with
the cheapest f and keep going until we find a solution.

Heuristics
The most important question when doing first-best/A∗-type search strate-
gies is the heuristic h used to decide the node expansion strategy. The re-
quirements on h are basically:

• h must be consistent (never overestimates the remaining cost)

• h must be fast to calculate

• additional data needed to calculate h must take up little space

For this algorithm, several experiments with different heuristics h were
made, and we settled for a strategy where:

• We precalculate for each state in the automatonA, what symbols can
possibly be encountered on future paths starting from that state

• The path length is variable from 1 . . .∞
• Whenever we need to calculate h in the search we compare the num-

ber of symbols different in the word remainder vs. the symbols stored
in the state

f

c

a

god

t

sr

[][o,r]

[a,c,d,f,o,r] [o,g]

[s,t]

[g,s] [s]

[a,t]
*

20

3 5

4 7

61

FIGURE 1: Automaton where every state contains the possible symbols that can be
encountered 2 steps ahead.

f

c

a

god

t

sr

[]

o,r,s,t]
[o,g,s] [g,s]

[g,o,r,s]

[s][a,c,d,f,g,

[s,t][a,s,t]
*

FIGURE 2: Automaton where every state contains the possible symbols that can be
encountered∞ steps ahead.

Choosing a heuristic
Since several different h (varying with lookahead length) were available, we conducted experiments
to find an overall reliable strategy. Most results were similar to that of table 1.

h0 h1 h2 h3 h4 h5

NI 6092 1892 1548 1772 1904 622
NE 3295 1143 909 1049 1193 89

TABLE 1: Average number of nodes inserted and nodes expanded using 5 strategies, tested with random
misspellings against a wide-coverage Spanish dictionary/morphology encoded as an automaton.

h0 : no heuristic (i.e. h = 0 always)

h1 : n =∞ (we only use the∞ lookahead)

h2 : n = 2

h3 : n = 3

h4 : n = 4

h5 : n = MAX(h1, h2) (also, ties in priority queue broken depending on value of pos)

Example & Results

f = 0 g = 0 h =0
pos = 0
state = 0

state=0

pos=1
state=1

f=4 g=1 h=3
pos=0
state=1

pos=1
state=2

pos=0

f=1 g=1 h=0

f=2 g=1 h=1
pos=0

pos=1
state=3

pos=1

state=3

d:d

0:d

d:c

0:c

d:0

d:f

0:f

state=2

f=3 g=1 h=2

initial node

f=3 g=1 h=2

f=1 g=1 h=0

f=2 g=0 h=2

Input word: dat

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

ti
m

e(
m

se
c)

MED

Average times for MED search for two algorithms

Current algorithm
Schulz & Mihov

FIGURE 3: Illustration of A∗-search FIGURE 4: Comparison against Schulz & Mihov’s algorithm
against the word dat and the automaton for 1,000 random words, 100 of each edit distance between
in figure 2. 0 and 10; words taken from the FreeLing Spanish

dictionary and randomly perturbed.

Conclusions
• A∗-search works well for approximate string matching with the relatively simple heuristic

presented here

• The algorithm has been implemented and is included in the freely available finite-state toolkit
foma, found at http://foma.sf.net.

• Additional features that have been implemented (also in foma) include the possibility of spec-
ifying context-dependent confusion matrices to specify different costs for different types of
substitutions, deletions and insertions, depending on the environment where they occur

1

