Fast Approximate String Matching with Finite Automata

Mans Hulden
mhulden@email.arizona.edu
The University of Arizona
Helsinki Finite State Technology Research Group
University of Helsinki

The problem

The problem addressed here is a classic search problem: given a word \(w_{in} \), not found in a list \(W \), which word in \(W \) most closely resembles \(w_{in} \)?

\[
\begin{array}{c}
? \\
W_1 \\
W_2 \\
\vdots \\
W_n \\
W_{in}
\end{array}
\]

This can be costly using standard edit distance calculations for several reasons:

- If the size of the list \(W \) is large, we cannot practically calculate a ‘distance’ between every word on the list and our candidate word to find the solution
- The list \(W \) may be infinite: we may have a grammar that models unlimited compounding and affixing and thus allows infinitely long words
- We may want to use complex distance metrics to define the similarity between two words

An alternate formulation

Instead of considering a list \(W \) to find approximate matches for a word \(w_{in} \), we consider finding the words in a finite-state automaton \(A \) that most closely resemble \(w_{in} \).

Generalizing the problem has a number of potential advantages:

- Any finite list \(W \) can be converted into a deterministic finite state automaton
- A finite state automaton can encode an infinite number of words
- Morphological analyzers are often designed to be finite-state transducers (FSTs). It is trivial, given a morphological FST, to extract an automaton that encodes all the legal words in the language

Applying A*-search to the problem

We apply the classic A*-search algorithm to the problem. In effect, we match letters in \(w_{in} \) against arcs in the automaton \(A \) taking into account the possibility of insertion, deletion and substitution. For each step and node expansion in the search space we recalculate the score \(f = g + h \), where \(g \) is the accumulated cost so far, and \(h \) our heuristic guess of the future score. We maintain nodes in a priority queue and iteratively expand the one with the cheapest \(f \) and keep going until we find a solution.

Heuristics

The most important question when doing first-best/A*-type search strategies is the heuristic \(h \) used to decide the node expansion strategy. The requirements on \(h \) are basically:

- \(h \) must be consistent (never overestimates the remaining cost)
- \(h \) must be fast to calculate
- additional data needed to calculate \(h \) must take up little space

For this algorithm, several experiments with different heuristics \(h \) were made, and we settled for a strategy where:

- We precalculate for each state in the automaton \(A \), what symbols can possibly be encountered on future paths starting from that state
- The path length is variable from \(1 \ldots \infty \)
- Whenever we need to calculate \(h \) in the search we compare the number of symbols different in the word remainder vs. the symbols stored in the state

Choosing a heuristic

Since several different \(h \) (varying with lookahead length) were available, we conducted experiments to find an overall reliable strategy. Most results were similar to that of table 1.

<table>
<thead>
<tr>
<th>(h)</th>
<th>(h_0)</th>
<th>(h_1)</th>
<th>(h_2)</th>
<th>(h_3)</th>
<th>(h_4)</th>
<th>(h_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_0)</td>
<td>(n=\infty) (we only use the (\infty) lookahead)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h_1)</td>
<td>(n=2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h_2)</td>
<td>(n=3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h_3)</td>
<td>(n=4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h_4)</td>
<td>(n=\max(h_1, h_2)) (also, ties in priority queue broken depending on value of (pos))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example & Results

Input word: dat

\[
\text{Average times for MED search for two algorithms}
\]

Comparison against Schulz & Mihov’s algorithm for 1,000 random words, 100 of each edit distance between 0 and 10; words taken from the Free Ling Spanish dictionary and randomly perturbed.

Conclusions

- A*-search works well for approximate string matching with the relatively simple heuristic presented here
- The algorithm has been implemented and is included in the freely available finite-state toolkit foma, found at http://foma.sf.net.
- Additional features that have been implemented (also in foma) include the possibility of specifying context-dependent confusion matrices to specify different costs for different types of substitutions, deletions and insertions, depending on the environment where they occur