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Goal: learn to inflect (unseen) words from annotated data 
in a language-independent way
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Goal: learn to inflect (unseen) words from annotated data 
in a language-independent way

Data (inflection tables) 
German verbs example:

schreiben
schreibend
geschrieben
schreibe
schreibst
schreibt

holen
sein
greifen

helfen
...

(write)
(fetch)

(be)
(grab)

(help)
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Goal: learn to inflect (unseen) words from annotated data 
in a language-independent way

Data (inflection tables) 
German example:

sein
greifen

helfen
...

(fetch)
(be)
(grab)

(help)

holen
holend
geholt
hole
holst
holt
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schreiben
schreibend
geschrieben
schreibe
schreibst
schreibt

holen
sein
greifen

helfen

...
bleiben
? 
? 
? 
? 
?

‘stay’

Training data Reconstruct unseen forms 
from lemma/base form
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Dreyer and Eisner (2011) 
 - Semi-supervised Bayesian model that learns from a 
small amount of  “seed paradigms” 

Durrett and DeNero (2013) 
 - Supervised discriminative model that learns rule 
transformations to reconstruct paradigms from many 
examples 

Ahlberg et al. (2014) 
 - Symbolic model; adaptable to supervised/semi-
supervised settings 
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Produce an abstract representation of  inflection paradigms by 
extracting the longest common subsequence (LCS) from each 
inflection table, and assigning piecewise discontinuous 
subsequences to variables Ahlberg et al. (2014), Hulden (2014)

unlabeled data (Goldsmith, 2001; Schone and Ju-
rafsky, 2001; Chan, 2006; Creutz and Lagus,
2007; Monson et al., 2008). Hammarström and
Borin (2011) provides a current overview of unsu-
pervised learning.

Previous work with similar semi-supervised
goals as the ones in this paper include Yarowsky
and Wicentowski (2000), Neuvel and Fulop
(2002), Clément et al. (2004). Recent machine
learning oriented work includes Dreyer and Eis-
ner (2011) and Durrett and DeNero (2013), which
documents a method to learn orthographic trans-
formation rules to capture patterns across inflec-
tion tables. Part of our evaluation uses the same
dataset as Durrett and DeNero (2013). Eskander
et al. (2013) shares many of the goals in this paper,
but is more supervised in that it focuses on learn-
ing inflectional classes from richer annotation.

A major departure from much previous work
is that we do not attempt to encode variation
as string-changing operations, say by string edits
(Dreyer and Eisner, 2011) or transformation rules
(Lindén, 2008; Durrett and DeNero, 2013) that
perform mappings between forms. Rather, our
goal is to encode all variation within paradigms
by presenting them in a sufficiently generic fash-
ion so as to allow affixation processes, phonolog-
ical alternations as well as orthographic changes
to naturally fall out of the paradigm specification
itself. Also, we perform no explicit alignment of
the various forms in an inflection table, as in e.g.
Tchoukalov et al. (2010). Rather, we base our al-
gorithm on extracting the longest common subse-
quence (LCS) shared by all forms in an inflection
table, from which alignment of segments falls out
naturally. Although our paradigm representation
is similar to and inspired by that of Forsberg et al.
(2006) and Détrez and Ranta (2012), our method
of generalizing from inflection tables to paradigms
is novel.

3 Paradigm learning

In what follows, we adopt the view that words
and their inflection patterns can be organized
into paradigms (Hockett, 1954; Robins, 1959;
Matthews, 1972; Stump, 2001). We essentially
treat a paradigm as an ordered set of functions
(f1, . . . , fn), where fi:x1, . . . , xn 7! ⌃⇤, that is,
where each entry in a paradigm is a function from
variables to strings, and each function in a partic-
ular paradigm shares the same variables.

3.1 Paradigm representation
We represent the functions in what we call ab-
stract paradigm. In our representation, an ab-
stract paradigm is an ordered collection of strings,
where each string may additionally contain in-
terspersed variables denoted x1, x2, . . . , xn. The
strings represent fixed, obligatory parts of a
paradigm, while the variables represent mutable
parts. These variables, when instantiated, must
contain at least one segment, but may otherwise
vary from word to word. A complete abstract
paradigm captures some generalization where the
mutable parts represented by variables are instan-
tiated the same way for all forms in one particu-
lar inflection table. For example, the fairly simple
paradigm

x1 x1+s x1+ed x1+ing

could represent a set of English verb forms, where
x1 in this case would coincide with the infinitive
form of the verb—walk, climb, look, etc.

For more complex patterns, several variable
parts may be invoked, some of them discontinu-
ous. For example, part of an inflection paradigm
for German verbs of the type schreiben (to write)
verbs may be described as:

x1+e+x2+x3+en INFINITIVE
x1+e+x2+x3+end PRESENT PARTICIPLE
ge+x1+x2+e+x3+en PAST PARTICIPLE
x1+e+x2+x3+e PRESENT 1P SG
x1+e+x2+x3+st PRESENT 2P SG
x1+e+x2+x3+t PRESENT 3P SG

If the variables are instantiated as x1=schr,
x2=i, and x3=b, the paradigm corresponds to
the forms (schreiben, schreibend, geschrieben,
schreibe, schreibst, schreibt). If, on the other
hand, x1=l, x2=i, and x3=h, the same paradigm re-
flects the conjugation of leihen (to lend/borrow)—
(leihen, leihend, geliehen, leihe, leihst, leiht).

It is worth noting that in this representation, no
particular form is privileged in the sense that all
other forms can only be generated from some spe-
cial form, say the infinitive. Rather, in the cur-
rent representation, all forms can be derived from
knowing the variable instantiations. Also, given
only a particular word form and a hypothetical
paradigm to fit it in, the variable instantiations can
often be logically deduced unambiguously. For
example, let us say we have a hypothetical form
steigend and need to fit it in the above paradigm,
without knowing which slot it should occupy. We

schreiben
schreibend
geschrieben
schreibe
schreibst
schreibt

LCS = schrib 

x1 = schr 
x2 = i 
x3 = b

infl. table “paradigm”
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may deduce that it must represent the present par-
ticiple, and that x1=st, x2=i, and x3=g. From this
knowledge, all other forms can subsequently be
derived.

Although we have provided grammatical in-
formation in the above table for illustrative pur-
poses, our primary concern in the current work is
the generalization from inflection tables—which
for our purposes are simply an ordered set of
word forms—to paradigms of the format dis-
cussed above.

3.2 Paradigm induction from inflection tables

The core component of our method consists of
finding, given an inflection table, the maximally
general paradigm that reflects the information in
that table. To this end, we make the assumption
that string subsequences that are shared by dif-
ferent forms in an inflection table are incidental
and can be generalized over. For example, given
the English verb swim, and a simple inflection ta-
ble swim#swam#swum,2 we make the assump-
tion that the common sequences sw and m are ir-
relevant to the inflection, and that by disregarding
these strings, we can focus on the segments that
vary within the table—in this case the variation
i⇠a⇠u. In other words, we can assume sw and
m to be variables that vary from word to word
and describe the table swim#swam#swum as
x1+i+x2#x1+a+x2#x1+u+x2, where x1=sw and
x2=m in the specific table.

3.2.1 Maximally general paradigms
In order to generalize as much as possible from an
inflection table, we extract from it what we call the
maximally general paradigm by:

1. Finding the longest common subsequence
(LCS) to all the entries in the inflection table.

2. Finding the segmentation into variables of
the LCS(s) (there may be several) in the in-
flection table that results in

(a) The smallest number of variables. Two
segments xy in the LCS must be part of
the same variable if they always occur
together in every form in the inflection
table, otherwise they must be assigned
separate variables.

2To save space, we will henceforth use the #-symbol as a
delimiter between entries in an inflection table or paradigm.

ring
rang
rung

rng

���������
������	


������
���������
������

swim
swam
swum

swm

Figure 1: Illustration of our paradigm generaliza-
tion algorithm. In step ¿ we extract the LCS sep-
arately for each inflection table, attempt to find
a consistent fit between the LCS and the forms
present in the table (step ¡), and assign the seg-
ments that participate in the LCS variables (step
¬). Finally, resulting paradigms that turn out to be
identical may be collapsed (step √) (section 3.3).

(b) The smallest total number of infixed
non-variable segments in the inflection
table (segments that occur between vari-
ables).

3. Replacing the discontinuous sequences that
are part of the LCS with variables (every
form in a paradigm will contain the same
number of variables).

These steps are illustrated in figure 1. The
first step, extracting the LCS from a collection of
strings, is the well-known multiple longest com-
mon subsequence problem (MLCS). It is known
to be NP-hard (Maier, 1978). Although the num-
ber of strings to find the LCS from may be rather
large in real-world data, we find that a few sensible
heuristic techniques allow us to solve this problem
efficiently for practical linguistic material, i.e., in-
flection tables. We calculate the LCS by calculat-
ing intersections of finite-state machines that en-
code all subsequences of all words, using the foma
finite-state toolkit (Hulden, 2009).3

While for most tables there is only one way
to segment the LCS in the various forms, some
ambiguous corner cases need to be resolved by
imposing additional criteria for the segmentation,
given in steps 2(a) and 2(b). As an example,
consider a snippet of a small conjugation table
for the Spanish verb comprar (to buy), com-
prar#compra#compro. Obviously the LCS is
compr—however, this can be distributed in two
different ways across the strings, as seen below.

3Steps 2 and 3 are implemented using more involved
finite-state techniques that we plan to describe elsewhere.

Toy example (English verbs)
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may deduce that it must represent the present par-
ticiple, and that x1=st, x2=i, and x3=g. From this
knowledge, all other forms can subsequently be
derived.

Although we have provided grammatical in-
formation in the above table for illustrative pur-
poses, our primary concern in the current work is
the generalization from inflection tables—which
for our purposes are simply an ordered set of
word forms—to paradigms of the format dis-
cussed above.

3.2 Paradigm induction from inflection tables

The core component of our method consists of
finding, given an inflection table, the maximally
general paradigm that reflects the information in
that table. To this end, we make the assumption
that string subsequences that are shared by dif-
ferent forms in an inflection table are incidental
and can be generalized over. For example, given
the English verb swim, and a simple inflection ta-
ble swim#swam#swum,2 we make the assump-
tion that the common sequences sw and m are ir-
relevant to the inflection, and that by disregarding
these strings, we can focus on the segments that
vary within the table—in this case the variation
i⇠a⇠u. In other words, we can assume sw and
m to be variables that vary from word to word
and describe the table swim#swam#swum as
x1+i+x2#x1+a+x2#x1+u+x2, where x1=sw and
x2=m in the specific table.

3.2.1 Maximally general paradigms
In order to generalize as much as possible from an
inflection table, we extract from it what we call the
maximally general paradigm by:

1. Finding the longest common subsequence
(LCS) to all the entries in the inflection table.

2. Finding the segmentation into variables of
the LCS(s) (there may be several) in the in-
flection table that results in

(a) The smallest number of variables. Two
segments xy in the LCS must be part of
the same variable if they always occur
together in every form in the inflection
table, otherwise they must be assigned
separate variables.

2To save space, we will henceforth use the #-symbol as a
delimiter between entries in an inflection table or paradigm.

ring
rang
rung

[r]i[ng]
[r]a[ng]
[r]u[ng]

rng

���������
������	
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swim
swam
swum

swm
[sw]i[m]
[sw]a[m]
[sw]u[m]

Figure 1: Illustration of our paradigm generaliza-
tion algorithm. In step ¿ we extract the LCS sep-
arately for each inflection table, attempt to find
a consistent fit between the LCS and the forms
present in the table (step ¡), and assign the seg-
ments that participate in the LCS variables (step
¬). Finally, resulting paradigms that turn out to be
identical may be collapsed (step √) (section 3.3).

(b) The smallest total number of infixed
non-variable segments in the inflection
table (segments that occur between vari-
ables).

3. Replacing the discontinuous sequences that
are part of the LCS with variables (every
form in a paradigm will contain the same
number of variables).

These steps are illustrated in figure 1. The
first step, extracting the LCS from a collection of
strings, is the well-known multiple longest com-
mon subsequence problem (MLCS). It is known
to be NP-hard (Maier, 1978). Although the num-
ber of strings to find the LCS from may be rather
large in real-world data, we find that a few sensible
heuristic techniques allow us to solve this problem
efficiently for practical linguistic material, i.e., in-
flection tables. We calculate the LCS by calculat-
ing intersections of finite-state machines that en-
code all subsequences of all words, using the foma
finite-state toolkit (Hulden, 2009).3

While for most tables there is only one way
to segment the LCS in the various forms, some
ambiguous corner cases need to be resolved by
imposing additional criteria for the segmentation,
given in steps 2(a) and 2(b). As an example,
consider a snippet of a small conjugation table
for the Spanish verb comprar (to buy), com-
prar#compra#compro. Obviously the LCS is
compr—however, this can be distributed in two
different ways across the strings, as seen below.

3Steps 2 and 3 are implemented using more involved
finite-state techniques that we plan to describe elsewhere.

Toy example (English verbs)
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may deduce that it must represent the present par-
ticiple, and that x1=st, x2=i, and x3=g. From this
knowledge, all other forms can subsequently be
derived.

Although we have provided grammatical in-
formation in the above table for illustrative pur-
poses, our primary concern in the current work is
the generalization from inflection tables—which
for our purposes are simply an ordered set of
word forms—to paradigms of the format dis-
cussed above.

3.2 Paradigm induction from inflection tables

The core component of our method consists of
finding, given an inflection table, the maximally
general paradigm that reflects the information in
that table. To this end, we make the assumption
that string subsequences that are shared by dif-
ferent forms in an inflection table are incidental
and can be generalized over. For example, given
the English verb swim, and a simple inflection ta-
ble swim#swam#swum,2 we make the assump-
tion that the common sequences sw and m are ir-
relevant to the inflection, and that by disregarding
these strings, we can focus on the segments that
vary within the table—in this case the variation
i⇠a⇠u. In other words, we can assume sw and
m to be variables that vary from word to word
and describe the table swim#swam#swum as
x1+i+x2#x1+a+x2#x1+u+x2, where x1=sw and
x2=m in the specific table.

3.2.1 Maximally general paradigms
In order to generalize as much as possible from an
inflection table, we extract from it what we call the
maximally general paradigm by:

1. Finding the longest common subsequence
(LCS) to all the entries in the inflection table.

2. Finding the segmentation into variables of
the LCS(s) (there may be several) in the in-
flection table that results in

(a) The smallest number of variables. Two
segments xy in the LCS must be part of
the same variable if they always occur
together in every form in the inflection
table, otherwise they must be assigned
separate variables.

2To save space, we will henceforth use the #-symbol as a
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swim
swam
swum

swm
[sw]i[m]
[sw]a[m]
[sw]u[m]

x1+i+x2
x1+a+x2
x1+u+x2

x1+i+x2
x1+a+x2
x1+u+x2

��	������
��������������

x1+i+x2
x1+a+x2
x1+u+x2

Figure 1: Illustration of our paradigm generaliza-
tion algorithm. In step ¿ we extract the LCS sep-
arately for each inflection table, attempt to find
a consistent fit between the LCS and the forms
present in the table (step ¡), and assign the seg-
ments that participate in the LCS variables (step
¬). Finally, resulting paradigms that turn out to be
identical may be collapsed (step √) (section 3.3).

(b) The smallest total number of infixed
non-variable segments in the inflection
table (segments that occur between vari-
ables).

3. Replacing the discontinuous sequences that
are part of the LCS with variables (every
form in a paradigm will contain the same
number of variables).

These steps are illustrated in figure 1. The
first step, extracting the LCS from a collection of
strings, is the well-known multiple longest com-
mon subsequence problem (MLCS). It is known
to be NP-hard (Maier, 1978). Although the num-
ber of strings to find the LCS from may be rather
large in real-world data, we find that a few sensible
heuristic techniques allow us to solve this problem
efficiently for practical linguistic material, i.e., in-
flection tables. We calculate the LCS by calculat-
ing intersections of finite-state machines that en-
code all subsequences of all words, using the foma
finite-state toolkit (Hulden, 2009).3

While for most tables there is only one way
to segment the LCS in the various forms, some
ambiguous corner cases need to be resolved by
imposing additional criteria for the segmentation,
given in steps 2(a) and 2(b). As an example,
consider a snippet of a small conjugation table
for the Spanish verb comprar (to buy), com-
prar#compra#compro. Obviously the LCS is
compr—however, this can be distributed in two
different ways across the strings, as seen below.

3Steps 2 and 3 are implemented using more involved
finite-state techniques that we plan to describe elsewhere.

ring:   x1 = r,   x2 = g 
swim: x1 = sw, x2 = m

ring and swim 
belong to the same class

Toy example (English verbs)
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DE-NOUNS

DE-VERBS

Figure 2: Degree of coverage with varying num-
bers of paradigms.

5 Evaluation

To evaluate the method, we have conducted three
experiments. First we repeat an experiment pre-
sented in Durrett and DeNero (2013) using the
same data and experiment setup, but with our
generalization method. In this experiment, we
are given a number of complete inflection tables
scraped from Wiktionary. The task is to recon-
struct complete inflection tables from 200 held-out
base forms. For this task, we evaluate per form
accuracy as well as per table accuracy for recon-
struction. The second experiment is the same as
the first, but with additional access to an unlabeled
text dump for the language from Wikipedia.

In the last experiment we try to mimic the situa-
tion of a linguist starting out to describe a new lan-
guage. The experiment uses a large-scale Swedish
morphology as reference and evaluates how reli-
ably a lexicon can be gathered from a word list us-
ing only a few manually specified inflection tables
generalized into abstract paradigms by our system.

5.1 Experiment 1: Wiktionary
In our first experiment we start from the inflec-
tion tables in the development and test set from
Durrett and DeNero (2013), henceforth D&DN13.
Table 3 shows the number of input tables as well
as the number of paradigms that they result in af-
ter generalization and collapsing. For all cases,
the number of output paradigms are below 10%
of the number of input inflection tables. Figure
2 shows the generalization rate achieved with the
paradigms. For instance, the 20 most common re-
sulting German noun paradigms are sufficient to
model almost 95% of the 2,564 separate inflection
tables given as input.

As described earlier, in the reconstruction task,
the input base forms are compared to the abstract

Input: Output:
Data inflection abstract

tables paradigms

DE-VERBS 1827 140
DE-NOUNS 2564 70
ES-VERBS 3855 97
FI-VERBS 7049 282
FI-NOUNS-ADJS 6200 258

Table 3: Generalization of paradigms. The num-
ber of paradigms produced from Wiktionary in-
flection tables by generalization and collapsing of
abstract paradigms.

paradigms by measuring the longest common suf-
fix length for each input base form compared to
the ones seen during training. This approach is
memory-based: it simply measures the similarity
of a given lemma to the lemmas encountered dur-
ing the learning phase. Table 4 presents our results
juxtaposed with the ones reported by D&DN13.
While scoring slightly below D&DN13 for the
majority of the languages when measuring form
accuracy, our method shows an advantage when
measuring the accuracy of complete tables. In-
terestingly, the only case where we improve upon
the form accuracy of D&DN13 is German verbs,
where we get our lowest table accuracy.

Table 4 further shows an oracle score, giv-
ing an upper bound for our method that would
be achieved if we were always able to pick the
best fitting paradigm available. This upper bound
ranges from 99% (Finnish verbs) to 100% (three
out of five tests).

5.2 Experiment 2: Wiktionary and
Wikipedia

In our second experiment, we extend the previous
experiment by adding access to a corpus. Apart
from measuring the longest common suffix length,
we now also compute the frequency of the hy-
pothetical candidate forms in every generated ta-
ble and use this to favor paradigms that generate
a large number of attested forms. For this, we
use a Wikipedia dump, from which we have ex-
tracted word-form frequencies.5 In total, the num-
ber of word types in the Wikipedia corpus was
8.9M (German), 3.4M (Spanish), 0.7M (Finnish),
and 2.7M (Swedish). Table 5 presents the results,

5The corpora were downloaded and extracted as de-
scribed at http://medialab.di.unipi.it/wiki/
Wikipedia_Extractor

Collapsing paradigms

*Wiktionary data from Durrett and DeNero (2013)

Comparison:  
Thompson (1998) lists 79 “classes” of  Spanish verbs 
Kotus (2007) Finnish grammar uses 51 noun (& adj) paradigms
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An inflection table can be reconstructed from a lemma according to an 
abstract paradigm:

show 

panic 

x1 
x1 +ed 
x1 +n 
x1 +ing 

x1 
x1 +ked 
x1 +ked 
x1 +king

lemma abstract paradigm guess



NAACL-HLT 2015 Paradigm classification in supervised learning of morphology

Reconstruction

13

An inflection table can be reconstructed from a lemma according to an 
abstract paradigm:

show 
showed 
shown 
showing 

panic 
panicked 
panicked 
panicking

x1 
x1 +ed 
x1 +n 
x1 +ing 

x1 
x1 +ked 
x1 +ked 
x1 +king

lemma abstract paradigm guess
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Reduces to choosing the appropriate paradigm for the unknown lemma

x1+en

...
...
...

x1+e+x2+x3+en 
x1+e+x2+x3+end 

ge+x1+x2+e+x3+en 
x1+e+x2+x3+e 
x1+e+x2+x3+st 
x1+e+x2+x3+t 

pn

bleiben
? 
? 
? 
? 
?

?

x1+ie+x2+en

p1

p2

p3
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(many competing paradigms can be ruled out by simple inspection)

x1+ie+x2+en
...

...
...

p3

pn

bleiben
?
?
?
?
?

ge+x1+o+x2+en
x1+ie+x2+e

from
“fliegen” xx1+ie+x2+end

x1+ie+x2+st
x1+ie+x2+t
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Train a classifier for the remaining choices

x1+en
x1+e+x2+x3+en 
x1+e+x2+x3+end 

ge+x1+x2+e+x3+en 
x1+e+x2+x3+e 
x1+e+x2+x3+st 
x1+e+x2+x3+t 

p1

p2

bleiben
? 
? 
? 
? 
?

?
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After classification, complete table can be reconstructed from lemma

x1+e+x2+x3+en 
x1+e+x2+x3+end 

ge+x1+x2+e+x3+en 
x1+e+x2+x3+e 
x1+e+x2+x3+st 
x1+e+x2+x3+t 

p1 bleiben 
bleibend
geblieben
bleibe
bleibst
bleibt
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• Only use lemmas seen in paradigms as training data 

• Use edge-anchored substrings as binary features, e.g. 

   f(“lesen”) = {#l, #le, #les, #lese, #lesen, lesen#, esen#, sen#, en#, n#} 

• Linear SVM (one-vs-the-rest multi-class) 

• Feature selection using dev set on maximum length of  prefix/suffix to use 
   (3-9 symbols), and whether to include prefix/suffix at all 

• (Other types of  substring-features were explored, with worse results)
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(1) 
Inflection tables for three languages from Wiktionary tables (Durrett & 
DeNero, 2013): Finnish (nouns/adjectives, verbs), Spanish (verbs), 
German (nouns, verbs) 

(2) 
Additional inflection tables gathered from various resources for: 
Catalan (nouns, verbs), English (verbs), French (nouns, verbs), Galician 
(nouns, verbs), Italian (nouns, verbs), Portuguese (nouns, verbs), Russian 
(nouns), Maltese (verbs)

(1) tables very clean, no defective forms/parallel forms 
(2) contains defective tables, parallel forms (cactuses ~ cacti), etc.
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(1) 
Inflection tables for three languages from Wiktionary tables 
(Durrett & DeNero, 2013): Finnish (nouns/adjectives, verbs), 
Spanish (verbs), German (nouns, verbs) 

0 50 100 150 200
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Inflection table coverage

FI-NOUNS-ADJS

FI-VERBS
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DE-NOUNS

DE-VERBS

Figure 2: Degree of coverage with varying num-
bers of paradigms.

5 Evaluation

To evaluate the method, we have conducted three
experiments. First we repeat an experiment pre-
sented in Durrett and DeNero (2013) using the
same data and experiment setup, but with our
generalization method. In this experiment, we
are given a number of complete inflection tables
scraped from Wiktionary. The task is to recon-
struct complete inflection tables from 200 held-out
base forms. For this task, we evaluate per form
accuracy as well as per table accuracy for recon-
struction. The second experiment is the same as
the first, but with additional access to an unlabeled
text dump for the language from Wikipedia.

In the last experiment we try to mimic the situa-
tion of a linguist starting out to describe a new lan-
guage. The experiment uses a large-scale Swedish
morphology as reference and evaluates how reli-
ably a lexicon can be gathered from a word list us-
ing only a few manually specified inflection tables
generalized into abstract paradigms by our system.

5.1 Experiment 1: Wiktionary
In our first experiment we start from the inflec-
tion tables in the development and test set from
Durrett and DeNero (2013), henceforth D&DN13.
Table 3 shows the number of input tables as well
as the number of paradigms that they result in af-
ter generalization and collapsing. For all cases,
the number of output paradigms are below 10%
of the number of input inflection tables. Figure
2 shows the generalization rate achieved with the
paradigms. For instance, the 20 most common re-
sulting German noun paradigms are sufficient to
model almost 95% of the 2,564 separate inflection
tables given as input.

As described earlier, in the reconstruction task,
the input base forms are compared to the abstract

Input: Output:
Data inflection abstract

tables paradigms

DE-VERBS 1827 140
DE-NOUNS 2564 70
ES-VERBS 3855 97
FI-VERBS 7049 282
FI-NOUNS-ADJS 6200 258

Table 3: Generalization of paradigms. The num-
ber of paradigms produced from Wiktionary in-
flection tables by generalization and collapsing of
abstract paradigms.

paradigms by measuring the longest common suf-
fix length for each input base form compared to
the ones seen during training. This approach is
memory-based: it simply measures the similarity
of a given lemma to the lemmas encountered dur-
ing the learning phase. Table 4 presents our results
juxtaposed with the ones reported by D&DN13.
While scoring slightly below D&DN13 for the
majority of the languages when measuring form
accuracy, our method shows an advantage when
measuring the accuracy of complete tables. In-
terestingly, the only case where we improve upon
the form accuracy of D&DN13 is German verbs,
where we get our lowest table accuracy.

Table 4 further shows an oracle score, giv-
ing an upper bound for our method that would
be achieved if we were always able to pick the
best fitting paradigm available. This upper bound
ranges from 99% (Finnish verbs) to 100% (three
out of five tests).

5.2 Experiment 2: Wiktionary and
Wikipedia

In our second experiment, we extend the previous
experiment by adding access to a corpus. Apart
from measuring the longest common suffix length,
we now also compute the frequency of the hy-
pothetical candidate forms in every generated ta-
ble and use this to favor paradigms that generate
a large number of attested forms. For this, we
use a Wikipedia dump, from which we have ex-
tracted word-form frequencies.5 In total, the num-
ber of word types in the Wikipedia corpus was
8.9M (German), 3.4M (Spanish), 0.7M (Finnish),
and 2.7M (Swedish). Table 5 presents the results,

5The corpora were downloaded and extracted as de-
scribed at http://medialab.di.unipi.it/wiki/
Wikipedia_Extractor

(dev: 200 tables) 
(test: 200 tables)
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Data Per table accuracy Per form accuracy Oracle acc.
per form (table)

SVM AFH14 D&DN13 SVM AFH14 D&DN13

DE-VERBS 91.5 68.0 85.0 98.11 97.04 96.19 99.70 (198/200)
DE-NOUNS 80.5 76.5 79.5 89.88 87.81 88.94 100.00 (200/200)
ES-VERBS 99.0 96.0 95.0 99.92 99.52 99.67 100.00 (200/200)
FI-VERBS 94.0 92.5 87.5 97.14 96.36 96.43 99.00 (195/200)
FI-NOUNS-ADJS 85.5 85.0 83.5 93.68 91.91 93.41 100.00 (200/200)

Table 1: Results on experiment 1. Here AFH14 stands for Ahlberg et al. (2014) and D&DN for Durrett and DeNero
(2013). The SVM-columns show the results of the current method.

the best learned paradigm for an unseen base form.
In experiment 2, where the correct forms may con-
sist of several alternatives, we only count a form as
correct if all alternatives are given and all are correct.
For example, the verb dream in English lists two
alternative past participles, dreamed and dreamt,
which both must be reconstructed for the past par-
ticiple form to count as being correct.

Experiment 1
The accuracies obtained on the first three-language
comparison experiment are shown in Table 1. Here,
we see a consistent improvement upon the max-
suff -strategy (AFH14) that simply picks the longest
matching suffix among the base forms seen and as-
signs the unseen word to the same paradigm (break-
ing ties by paradigm frequency), as well as improve-
ment over other learning strategies (D&DN13). Par-
ticularly marked is the improved accuracy on Ger-
man verbs. We assume that this is because German
verb prefixes, which are ignored in a suffix-based
classifier, contain information that is useful in clas-
sifying verb behavior. German verbs that contain so-
called inseparable prefixes like miss-, ver-, wider-
do not prefix a ge- in the past participle form. For ex-
ample: kaufen ⇠ gekauft, brauchen ⇠ gebraucht,
legen ⇠ gelegt, but verkaufen ⇠ verkauft, wider-
legen ⇠ widerlegt, missbrauchen ⇠ missbraucht,
reflecting the replacement of the standard ge- by the
inseparable prefix. There are many such inseparable
prefixes that immediately trigger this behavior (al-
though some prefixes only occasionally show insep-
arable behavior), yet this information is lost when
only looking at suffixes at classification time. This
analysis is supported by the fact that, during feature

selection, German verbs was the only dataset in this
first experiment where word prefixes were not re-
moved by the feature selection process.

Experiment 2
The results of the second experiment are given in
tables 2 (per table accuracy) and 3 (per form ac-
curacy). The tables contain information about how
many inflection tables were input on average over
5 folds to the learner (#tbl), how many paradigms
this reduced to (#par), and how many forms (slots)
each paradigm has (#forms). The mfreq column is
a baseline where the classifier always picks the most
populated paradigm, i.e. the paradigm that resulted
from combining the largest number of different in-
flection tables by the LCS process. The AFH14
shows the performance of a maximal suffix match-
ing classifier, identical to that used in Ahlberg et al.
(2014).

Discussion
Overall, the results support earlier claims that the
LCS-generalization appears to capture paradigmatic
behavior well, especially if combined with care-
ful classification into paradigms. There is a clear
and consistent improvement over baselines that use
the same data sets. In addition, the SVM-classifier
yields results comparable, and in many cases bet-
ter, to using a maximum suffix classifier and addi-
tionally having access to raw corpus data in the lan-
guage, a semi-supervised experiment reported sepa-
rately in Ahlberg et al. (2014). In this work we have
not attempted to extend the current method to such
a semi-supervised scenario, although such an exten-
sion seems both interesting and possible.

Oracle = always picks the best paradigm 

SVM = current method 
AFH14 = Ahlberg, Forsberg, Hulden (2014) [LCS + suffix-based classifier] 
D&DN13 = Durrett & DeNero (2013) [discriminative string transformation]
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Data #tbl #par mfreq AFH14 SVM Oracle

DE-N 2,210 66 18.99 76.09 77.68 98.99
DE-V 1,621 125 52.77 65.02 83.59 95.45
ES-V 3,243 90 70.42 92.25 93.48 96.59
FI-N&A 4,000 233 26.52 83.20 82.84 98.12
FI-V 4,000 204 43.04 91.88 91.64 94.76

MT-V 826 200 10.68 18.83 38.64 85.63

CA-N 4,000 49 44.12 94.00 94.92 99.44
CA-V 4,000 164 60.44 90.76 93.40 98.48
EN-V 4,000 161 77.12 89.40 90.00 97.40
FR-N 4,000 57 92.16 91.60 93.96 98.72
FR-V 4,000 95 81.52 93.72 96.48 98.80
GL-N 4,000 24 88.36 90.48 95.08 99.80
GL-V 3,212 101 45.21 58.92 60.87 98.95
IT-N 4,000 39 83.84 92.32 93.76 99.40
IT-V 4,000 115 63.96 89.68 91.56 98.68
PT-N 4,000 68 74.52 88.12 90.88 99.04
PT-V 4,000 92 62.00 76.96 80.20 99.20
RU-N 4,000 260 15.76 64.12 66.36 96.80

Table 2: Per table accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#tbl-column shows the number of inflection tables input
to the LCS-learner and the #par column shows the num-
ber of resulting unique paradigms. The mfreq-column il-
lustrates a baseline of simply picking the most frequent
paradigm, while AFH14 is the strategy of finding the
longest suffix match to the base forms in the training data
(Ahlberg et al., 2014). The SVM-column shows the re-
sults discussed in this paper.

Data #forms mfreq AFH14 SVM Oracle

DE-N 8 57.36 89.72 90.25 99.69
DE-V 27 87.35 96.12 95.28 99.20
ES-V 57 93.80 98.72 98.83 99.47
FI-N&A 233 52.15 91.03 91.06 98.95
FI-V 54 70.38 95.27 95.22 96.76

MT-V 16 39.75 54.66 61.15 95.49

CA-N 2 71.30 96.89 97.33 97.93
CA-V 53 86.89 98.18 98.89 99.77
EN-V 6 91.43 95.93 96.16 99.28
FR-N 2 93.24 92.48 94.68 99.08
FR-V 51 91.47 97.09 98.33 99.02
GL-N 2 91.92 92.82 95.38 99.78
GL-V 70 94.89 98.48 98.32 99.67
IT-N 3 89.36 93.38 94.59 97.44
IT-V 51 89.51 97.76 98.21 99.64
PT-N 4 83.35 89.78 91.97 98.60
PT-V 65 92.62 96.81 97.20 99.68
RU-N 12 25.16 88.19 89.35 99.15

Table 3: Per form accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#forms-column shows the number of different slots in the
paradigms. Other columns are as in table 2.

In some cases, we see a significant drop between
the per-form and the per-table accuracy. For exam-
ple, in the case of Russian nouns, per table accu-
racy is at 66.36%, while the per-form accuracy is
89.35%. This effect is explained—not only in the
Russian case but in many others—by the existence
of similar paradigms that differ only in very few
forms. If the classifier picks an incorrect, but closely
related paradigm, most forms may be produced cor-
rectly although the entire reconstructed table counts
as wrong if even a single form is incorrect.

A few outliers remain. The Maltese verbs, which
exhibit Semitic interdigitation in some paradigms,
seem to generalize fairly well, and have a per form
oracle score of 95.49 (shown in table 3). However,
this is not reflected in the relatively low per form
accuracy (61.15), which warrants further analysis. It
may be an indication of that the correct paradigm is
simply difficult to ascertain based only on the lemma
form, or that additional features could be developed,
perhaps ones that are discontinuous in the word.

An obvious extension to the current method is to
inspect a suggested reconstructed table holistically,
i.e., not relying only on base form features. That is,
one could avoid making a commitment to a particu-
lar paradigm based solely on the features of the base
form, and instead also include features from all the
forms that a paradigm would generate. Such fea-
tures are of course available in the training data in
the various forms in an inflection table. Features
from the seen forms could be used to rate compat-
ibility since an incorrect reconstruction of an inflec-
tion table may likely be identified by its tendency to
produce phonotactic patterns rarely or never seen in
the training data.

With relatively few paradigms learned from col-
lections of word forms, one can achieve fairly high
coverage on unseen data. In principle, for example,
the 13 most frequently used paradigms of Spanish
verbs suffice to cover 90% of all verbs (per token).
A useful application of this is rapid language re-
source development—one can elicit from a speaker
a small number of well-chosen inflection tables, e.g.
all forms of specific nouns, verbs, adjectives; gener-
alize these inflection tables into paradigms; and use
this information to deduce the possible morphologi-
cal classes for a majority of unseen word forms.

accuracy per table (entire inflection table correctly reconstructed)
mean (SVM) = 84.18

mfreq=pick most 
“popular” paradigm
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Data #tbl #par mfreq AFH14 SVM Oracle

DE-N 2,210 66 18.99 76.09 77.68 98.99
DE-V 1,621 125 52.77 65.02 83.59 95.45
ES-V 3,243 90 70.42 92.25 93.48 96.59
FI-N&A 4,000 233 26.52 83.20 82.84 98.12
FI-V 4,000 204 43.04 91.88 91.64 94.76

MT-V 826 200 10.68 18.83 38.64 85.63

CA-N 4,000 49 44.12 94.00 94.92 99.44
CA-V 4,000 164 60.44 90.76 93.40 98.48
EN-V 4,000 161 77.12 89.40 90.00 97.40
FR-N 4,000 57 92.16 91.60 93.96 98.72
FR-V 4,000 95 81.52 93.72 96.48 98.80
GL-N 4,000 24 88.36 90.48 95.08 99.80
GL-V 3,212 101 45.21 58.92 60.87 98.95
IT-N 4,000 39 83.84 92.32 93.76 99.40
IT-V 4,000 115 63.96 89.68 91.56 98.68
PT-N 4,000 68 74.52 88.12 90.88 99.04
PT-V 4,000 92 62.00 76.96 80.20 99.20
RU-N 4,000 260 15.76 64.12 66.36 96.80

Table 2: Per table accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#tbl-column shows the number of inflection tables input
to the LCS-learner and the #par column shows the num-
ber of resulting unique paradigms. The mfreq-column il-
lustrates a baseline of simply picking the most frequent
paradigm, while AFH14 is the strategy of finding the
longest suffix match to the base forms in the training data
(Ahlberg et al., 2014). The SVM-column shows the re-
sults discussed in this paper.

Data #forms mfreq AFH14 SVM Oracle

DE-N 8 57.36 89.72 90.25 99.69
DE-V 27 87.35 96.12 95.28 99.20
ES-V 57 93.80 98.72 98.83 99.47
FI-N&A 233 52.15 91.03 91.06 98.95
FI-V 54 70.38 95.27 95.22 96.76

MT-V 16 39.75 54.66 61.15 95.49

CA-N 2 71.30 96.89 97.33 97.93
CA-V 53 86.89 98.18 98.89 99.77
EN-V 6 91.43 95.93 96.16 99.28
FR-N 2 93.24 92.48 94.68 99.08
FR-V 51 91.47 97.09 98.33 99.02
GL-N 2 91.92 92.82 95.38 99.78
GL-V 70 94.89 98.48 98.32 99.67
IT-N 3 89.36 93.38 94.59 97.44
IT-V 51 89.51 97.76 98.21 99.64
PT-N 4 83.35 89.78 91.97 98.60
PT-V 65 92.62 96.81 97.20 99.68
RU-N 12 25.16 88.19 89.35 99.15

Table 3: Per form accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#forms-column shows the number of different slots in the
paradigms. Other columns are as in table 2.

In some cases, we see a significant drop between
the per-form and the per-table accuracy. For exam-
ple, in the case of Russian nouns, per table accu-
racy is at 66.36%, while the per-form accuracy is
89.35%. This effect is explained—not only in the
Russian case but in many others—by the existence
of similar paradigms that differ only in very few
forms. If the classifier picks an incorrect, but closely
related paradigm, most forms may be produced cor-
rectly although the entire reconstructed table counts
as wrong if even a single form is incorrect.

A few outliers remain. The Maltese verbs, which
exhibit Semitic interdigitation in some paradigms,
seem to generalize fairly well, and have a per form
oracle score of 95.49 (shown in table 3). However,
this is not reflected in the relatively low per form
accuracy (61.15), which warrants further analysis. It
may be an indication of that the correct paradigm is
simply difficult to ascertain based only on the lemma
form, or that additional features could be developed,
perhaps ones that are discontinuous in the word.

An obvious extension to the current method is to
inspect a suggested reconstructed table holistically,
i.e., not relying only on base form features. That is,
one could avoid making a commitment to a particu-
lar paradigm based solely on the features of the base
form, and instead also include features from all the
forms that a paradigm would generate. Such fea-
tures are of course available in the training data in
the various forms in an inflection table. Features
from the seen forms could be used to rate compat-
ibility since an incorrect reconstruction of an inflec-
tion table may likely be identified by its tendency to
produce phonotactic patterns rarely or never seen in
the training data.

With relatively few paradigms learned from col-
lections of word forms, one can achieve fairly high
coverage on unseen data. In principle, for example,
the 13 most frequently used paradigms of Spanish
verbs suffice to cover 90% of all verbs (per token).
A useful application of this is rapid language re-
source development—one can elicit from a speaker
a small number of well-chosen inflection tables, e.g.
all forms of specific nouns, verbs, adjectives; gener-
alize these inflection tables into paradigms; and use
this information to deduce the possible morphologi-
cal classes for a majority of unseen word forms.

accuracy per form (entire inflection table correctly reconstructed)
mean (SVM) = 93.46

mfreq=pick most 
“popular” paradigm
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Best:

Data #tbl #par mfreq AFH14 SVM Oracle

DE-N 2,210 66 18.99 76.09 77.68 98.99
DE-V 1,621 125 52.77 65.02 83.59 95.45
ES-V 3,243 90 70.42 92.25 93.48 96.59
FI-N&A 4,000 233 26.52 83.20 82.84 98.12
FI-V 4,000 204 43.04 91.88 91.64 94.76

MT-V 826 200 10.68 18.83 38.64 85.63

CA-N 4,000 49 44.12 94.00 94.92 99.44
CA-V 4,000 164 60.44 90.76 93.40 98.48
EN-V 4,000 161 77.12 89.40 90.00 97.40
FR-N 4,000 57 92.16 91.60 93.96 98.72
FR-V 4,000 95 81.52 93.72 96.48 98.80
GL-N 4,000 24 88.36 90.48 95.08 99.80
GL-V 3,212 101 45.21 58.92 60.87 98.95
IT-N 4,000 39 83.84 92.32 93.76 99.40
IT-V 4,000 115 63.96 89.68 91.56 98.68
PT-N 4,000 68 74.52 88.12 90.88 99.04
PT-V 4,000 92 62.00 76.96 80.20 99.20
RU-N 4,000 260 15.76 64.12 66.36 96.80

Table 2: Per table accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#tbl-column shows the number of inflection tables input
to the LCS-learner and the #par column shows the num-
ber of resulting unique paradigms. The mfreq-column il-
lustrates a baseline of simply picking the most frequent
paradigm, while AFH14 is the strategy of finding the
longest suffix match to the base forms in the training data
(Ahlberg et al., 2014). The SVM-column shows the re-
sults discussed in this paper.

Data #forms mfreq AFH14 SVM Oracle

DE-N 8 57.36 89.72 90.25 99.69
DE-V 27 87.35 96.12 95.28 99.20
ES-V 57 93.80 98.72 98.83 99.47
FI-N&A 233 52.15 91.03 91.06 98.95
FI-V 54 70.38 95.27 95.22 96.76

MT-V 16 39.75 54.66 61.15 95.49

CA-N 2 71.30 96.89 97.33 97.93
CA-V 53 86.89 98.18 98.89 99.77
EN-V 6 91.43 95.93 96.16 99.28
FR-N 2 93.24 92.48 94.68 99.08
FR-V 51 91.47 97.09 98.33 99.02
GL-N 2 91.92 92.82 95.38 99.78
GL-V 70 94.89 98.48 98.32 99.67
IT-N 3 89.36 93.38 94.59 97.44
IT-V 51 89.51 97.76 98.21 99.64
PT-N 4 83.35 89.78 91.97 98.60
PT-V 65 92.62 96.81 97.20 99.68
RU-N 12 25.16 88.19 89.35 99.15

Table 3: Per form accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#forms-column shows the number of different slots in the
paradigms. Other columns are as in table 2.

In some cases, we see a significant drop between
the per-form and the per-table accuracy. For exam-
ple, in the case of Russian nouns, per table accu-
racy is at 66.36%, while the per-form accuracy is
89.35%. This effect is explained—not only in the
Russian case but in many others—by the existence
of similar paradigms that differ only in very few
forms. If the classifier picks an incorrect, but closely
related paradigm, most forms may be produced cor-
rectly although the entire reconstructed table counts
as wrong if even a single form is incorrect.

A few outliers remain. The Maltese verbs, which
exhibit Semitic interdigitation in some paradigms,
seem to generalize fairly well, and have a per form
oracle score of 95.49 (shown in table 3). However,
this is not reflected in the relatively low per form
accuracy (61.15), which warrants further analysis. It
may be an indication of that the correct paradigm is
simply difficult to ascertain based only on the lemma
form, or that additional features could be developed,
perhaps ones that are discontinuous in the word.

An obvious extension to the current method is to
inspect a suggested reconstructed table holistically,
i.e., not relying only on base form features. That is,
one could avoid making a commitment to a particu-
lar paradigm based solely on the features of the base
form, and instead also include features from all the
forms that a paradigm would generate. Such fea-
tures are of course available in the training data in
the various forms in an inflection table. Features
from the seen forms could be used to rate compat-
ibility since an incorrect reconstruction of an inflec-
tion table may likely be identified by its tendency to
produce phonotactic patterns rarely or never seen in
the training data.

With relatively few paradigms learned from col-
lections of word forms, one can achieve fairly high
coverage on unseen data. In principle, for example,
the 13 most frequently used paradigms of Spanish
verbs suffice to cover 90% of all verbs (per token).
A useful application of this is rapid language re-
source development—one can elicit from a speaker
a small number of well-chosen inflection tables, e.g.
all forms of specific nouns, verbs, adjectives; gener-
alize these inflection tables into paradigms; and use
this information to deduce the possible morphologi-
cal classes for a majority of unseen word forms.

Data #tbl #par mfreq AFH14 SVM Oracle

DE-N 2,210 66 18.99 76.09 77.68 98.99
DE-V 1,621 125 52.77 65.02 83.59 95.45
ES-V 3,243 90 70.42 92.25 93.48 96.59
FI-N&A 4,000 233 26.52 83.20 82.84 98.12
FI-V 4,000 204 43.04 91.88 91.64 94.76

MT-V 826 200 10.68 18.83 38.64 85.63

CA-N 4,000 49 44.12 94.00 94.92 99.44
CA-V 4,000 164 60.44 90.76 93.40 98.48
EN-V 4,000 161 77.12 89.40 90.00 97.40
FR-N 4,000 57 92.16 91.60 93.96 98.72
FR-V 4,000 95 81.52 93.72 96.48 98.80
GL-N 4,000 24 88.36 90.48 95.08 99.80
GL-V 3,212 101 45.21 58.92 60.87 98.95
IT-N 4,000 39 83.84 92.32 93.76 99.40
IT-V 4,000 115 63.96 89.68 91.56 98.68
PT-N 4,000 68 74.52 88.12 90.88 99.04
PT-V 4,000 92 62.00 76.96 80.20 99.20
RU-N 4,000 260 15.76 64.12 66.36 96.80

Table 2: Per table accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#tbl-column shows the number of inflection tables input
to the LCS-learner and the #par column shows the num-
ber of resulting unique paradigms. The mfreq-column il-
lustrates a baseline of simply picking the most frequent
paradigm, while AFH14 is the strategy of finding the
longest suffix match to the base forms in the training data
(Ahlberg et al., 2014). The SVM-column shows the re-
sults discussed in this paper.

Data #forms mfreq AFH14 SVM Oracle

DE-N 8 57.36 89.72 90.25 99.69
DE-V 27 87.35 96.12 95.28 99.20
ES-V 57 93.80 98.72 98.83 99.47
FI-N&A 233 52.15 91.03 91.06 98.95
FI-V 54 70.38 95.27 95.22 96.76

MT-V 16 39.75 54.66 61.15 95.49

CA-N 2 71.30 96.89 97.33 97.93
CA-V 53 86.89 98.18 98.89 99.77
EN-V 6 91.43 95.93 96.16 99.28
FR-N 2 93.24 92.48 94.68 99.08
FR-V 51 91.47 97.09 98.33 99.02
GL-N 2 91.92 92.82 95.38 99.78
GL-V 70 94.89 98.48 98.32 99.67
IT-N 3 89.36 93.38 94.59 97.44
IT-V 51 89.51 97.76 98.21 99.64
PT-N 4 83.35 89.78 91.97 98.60
PT-V 65 92.62 96.81 97.20 99.68
RU-N 12 25.16 88.19 89.35 99.15

Table 3: Per form accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#forms-column shows the number of different slots in the
paradigms. Other columns are as in table 2.

In some cases, we see a significant drop between
the per-form and the per-table accuracy. For exam-
ple, in the case of Russian nouns, per table accu-
racy is at 66.36%, while the per-form accuracy is
89.35%. This effect is explained—not only in the
Russian case but in many others—by the existence
of similar paradigms that differ only in very few
forms. If the classifier picks an incorrect, but closely
related paradigm, most forms may be produced cor-
rectly although the entire reconstructed table counts
as wrong if even a single form is incorrect.

A few outliers remain. The Maltese verbs, which
exhibit Semitic interdigitation in some paradigms,
seem to generalize fairly well, and have a per form
oracle score of 95.49 (shown in table 3). However,
this is not reflected in the relatively low per form
accuracy (61.15), which warrants further analysis. It
may be an indication of that the correct paradigm is
simply difficult to ascertain based only on the lemma
form, or that additional features could be developed,
perhaps ones that are discontinuous in the word.

An obvious extension to the current method is to
inspect a suggested reconstructed table holistically,
i.e., not relying only on base form features. That is,
one could avoid making a commitment to a particu-
lar paradigm based solely on the features of the base
form, and instead also include features from all the
forms that a paradigm would generate. Such fea-
tures are of course available in the training data in
the various forms in an inflection table. Features
from the seen forms could be used to rate compat-
ibility since an incorrect reconstruction of an inflec-
tion table may likely be identified by its tendency to
produce phonotactic patterns rarely or never seen in
the training data.

With relatively few paradigms learned from col-
lections of word forms, one can achieve fairly high
coverage on unseen data. In principle, for example,
the 13 most frequently used paradigms of Spanish
verbs suffice to cover 90% of all verbs (per token).
A useful application of this is rapid language re-
source development—one can elicit from a speaker
a small number of well-chosen inflection tables, e.g.
all forms of specific nouns, verbs, adjectives; gener-
alize these inflection tables into paradigms; and use
this information to deduce the possible morphologi-
cal classes for a majority of unseen word forms.

Worst:

Data #tbl #par mfreq AFH14 SVM Oracle

DE-N 2,210 66 18.99 76.09 77.68 98.99
DE-V 1,621 125 52.77 65.02 83.59 95.45
ES-V 3,243 90 70.42 92.25 93.48 96.59
FI-N&A 4,000 233 26.52 83.20 82.84 98.12
FI-V 4,000 204 43.04 91.88 91.64 94.76

MT-V 826 200 10.68 18.83 38.64 85.63

CA-N 4,000 49 44.12 94.00 94.92 99.44
CA-V 4,000 164 60.44 90.76 93.40 98.48
EN-V 4,000 161 77.12 89.40 90.00 97.40
FR-N 4,000 57 92.16 91.60 93.96 98.72
FR-V 4,000 95 81.52 93.72 96.48 98.80
GL-N 4,000 24 88.36 90.48 95.08 99.80
GL-V 3,212 101 45.21 58.92 60.87 98.95
IT-N 4,000 39 83.84 92.32 93.76 99.40
IT-V 4,000 115 63.96 89.68 91.56 98.68
PT-N 4,000 68 74.52 88.12 90.88 99.04
PT-V 4,000 92 62.00 76.96 80.20 99.20
RU-N 4,000 260 15.76 64.12 66.36 96.80

Table 2: Per table accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#tbl-column shows the number of inflection tables input
to the LCS-learner and the #par column shows the num-
ber of resulting unique paradigms. The mfreq-column il-
lustrates a baseline of simply picking the most frequent
paradigm, while AFH14 is the strategy of finding the
longest suffix match to the base forms in the training data
(Ahlberg et al., 2014). The SVM-column shows the re-
sults discussed in this paper.

Data #forms mfreq AFH14 SVM Oracle

DE-N 8 57.36 89.72 90.25 99.69
DE-V 27 87.35 96.12 95.28 99.20
ES-V 57 93.80 98.72 98.83 99.47
FI-N&A 233 52.15 91.03 91.06 98.95
FI-V 54 70.38 95.27 95.22 96.76

MT-V 16 39.75 54.66 61.15 95.49

CA-N 2 71.30 96.89 97.33 97.93
CA-V 53 86.89 98.18 98.89 99.77
EN-V 6 91.43 95.93 96.16 99.28
FR-N 2 93.24 92.48 94.68 99.08
FR-V 51 91.47 97.09 98.33 99.02
GL-N 2 91.92 92.82 95.38 99.78
GL-V 70 94.89 98.48 98.32 99.67
IT-N 3 89.36 93.38 94.59 97.44
IT-V 51 89.51 97.76 98.21 99.64
PT-N 4 83.35 89.78 91.97 98.60
PT-V 65 92.62 96.81 97.20 99.68
RU-N 12 25.16 88.19 89.35 99.15

Table 3: Per form accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#forms-column shows the number of different slots in the
paradigms. Other columns are as in table 2.

In some cases, we see a significant drop between
the per-form and the per-table accuracy. For exam-
ple, in the case of Russian nouns, per table accu-
racy is at 66.36%, while the per-form accuracy is
89.35%. This effect is explained—not only in the
Russian case but in many others—by the existence
of similar paradigms that differ only in very few
forms. If the classifier picks an incorrect, but closely
related paradigm, most forms may be produced cor-
rectly although the entire reconstructed table counts
as wrong if even a single form is incorrect.

A few outliers remain. The Maltese verbs, which
exhibit Semitic interdigitation in some paradigms,
seem to generalize fairly well, and have a per form
oracle score of 95.49 (shown in table 3). However,
this is not reflected in the relatively low per form
accuracy (61.15), which warrants further analysis. It
may be an indication of that the correct paradigm is
simply difficult to ascertain based only on the lemma
form, or that additional features could be developed,
perhaps ones that are discontinuous in the word.

An obvious extension to the current method is to
inspect a suggested reconstructed table holistically,
i.e., not relying only on base form features. That is,
one could avoid making a commitment to a particu-
lar paradigm based solely on the features of the base
form, and instead also include features from all the
forms that a paradigm would generate. Such fea-
tures are of course available in the training data in
the various forms in an inflection table. Features
from the seen forms could be used to rate compat-
ibility since an incorrect reconstruction of an inflec-
tion table may likely be identified by its tendency to
produce phonotactic patterns rarely or never seen in
the training data.

With relatively few paradigms learned from col-
lections of word forms, one can achieve fairly high
coverage on unseen data. In principle, for example,
the 13 most frequently used paradigms of Spanish
verbs suffice to cover 90% of all verbs (per token).
A useful application of this is rapid language re-
source development—one can elicit from a speaker
a small number of well-chosen inflection tables, e.g.
all forms of specific nouns, verbs, adjectives; gener-
alize these inflection tables into paradigms; and use
this information to deduce the possible morphologi-
cal classes for a majority of unseen word forms.

Maltese has ‘mixed’ lexicon of  Semitic, Italian & Sicilian, English 

Maltese exhibits Semitic interdigitation (root-and-pattern paradigms) 
 in verbs 

Data #tbl #par mfreq AFH14 SVM Oracle

DE-N 2,210 66 18.99 76.09 77.68 98.99
DE-V 1,621 125 52.77 65.02 83.59 95.45
ES-V 3,243 90 70.42 92.25 93.48 96.59
FI-N&A 4,000 233 26.52 83.20 82.84 98.12
FI-V 4,000 204 43.04 91.88 91.64 94.76

MT-V 826 200 10.68 18.83 38.64 85.63

CA-N 4,000 49 44.12 94.00 94.92 99.44
CA-V 4,000 164 60.44 90.76 93.40 98.48
EN-V 4,000 161 77.12 89.40 90.00 97.40
FR-N 4,000 57 92.16 91.60 93.96 98.72
FR-V 4,000 95 81.52 93.72 96.48 98.80
GL-N 4,000 24 88.36 90.48 95.08 99.80
GL-V 3,212 101 45.21 58.92 60.87 98.95
IT-N 4,000 39 83.84 92.32 93.76 99.40
IT-V 4,000 115 63.96 89.68 91.56 98.68
PT-N 4,000 68 74.52 88.12 90.88 99.04
PT-V 4,000 92 62.00 76.96 80.20 99.20
RU-N 4,000 260 15.76 64.12 66.36 96.80

Table 2: Per table accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#tbl-column shows the number of inflection tables input
to the LCS-learner and the #par column shows the num-
ber of resulting unique paradigms. The mfreq-column il-
lustrates a baseline of simply picking the most frequent
paradigm, while AFH14 is the strategy of finding the
longest suffix match to the base forms in the training data
(Ahlberg et al., 2014). The SVM-column shows the re-
sults discussed in this paper.

Data #forms mfreq AFH14 SVM Oracle

DE-N 8 57.36 89.72 90.25 99.69
DE-V 27 87.35 96.12 95.28 99.20
ES-V 57 93.80 98.72 98.83 99.47
FI-N&A 233 52.15 91.03 91.06 98.95
FI-V 54 70.38 95.27 95.22 96.76

MT-V 16 39.75 54.66 61.15 95.49

CA-N 2 71.30 96.89 97.33 97.93
CA-V 53 86.89 98.18 98.89 99.77
EN-V 6 91.43 95.93 96.16 99.28
FR-N 2 93.24 92.48 94.68 99.08
FR-V 51 91.47 97.09 98.33 99.02
GL-N 2 91.92 92.82 95.38 99.78
GL-V 70 94.89 98.48 98.32 99.67
IT-N 3 89.36 93.38 94.59 97.44
IT-V 51 89.51 97.76 98.21 99.64
PT-N 4 83.35 89.78 91.97 98.60
PT-V 65 92.62 96.81 97.20 99.68
RU-N 12 25.16 88.19 89.35 99.15

Table 3: Per form accuracy results on the second exper-
iment. 5-fold cross-validation is used throughout. The
#forms-column shows the number of different slots in the
paradigms. Other columns are as in table 2.

In some cases, we see a significant drop between
the per-form and the per-table accuracy. For exam-
ple, in the case of Russian nouns, per table accu-
racy is at 66.36%, while the per-form accuracy is
89.35%. This effect is explained—not only in the
Russian case but in many others—by the existence
of similar paradigms that differ only in very few
forms. If the classifier picks an incorrect, but closely
related paradigm, most forms may be produced cor-
rectly although the entire reconstructed table counts
as wrong if even a single form is incorrect.

A few outliers remain. The Maltese verbs, which
exhibit Semitic interdigitation in some paradigms,
seem to generalize fairly well, and have a per form
oracle score of 95.49 (shown in table 3). However,
this is not reflected in the relatively low per form
accuracy (61.15), which warrants further analysis. It
may be an indication of that the correct paradigm is
simply difficult to ascertain based only on the lemma
form, or that additional features could be developed,
perhaps ones that are discontinuous in the word.

An obvious extension to the current method is to
inspect a suggested reconstructed table holistically,
i.e., not relying only on base form features. That is,
one could avoid making a commitment to a particu-
lar paradigm based solely on the features of the base
form, and instead also include features from all the
forms that a paradigm would generate. Such fea-
tures are of course available in the training data in
the various forms in an inflection table. Features
from the seen forms could be used to rate compat-
ibility since an incorrect reconstruction of an inflec-
tion table may likely be identified by its tendency to
produce phonotactic patterns rarely or never seen in
the training data.

With relatively few paradigms learned from col-
lections of word forms, one can achieve fairly high
coverage on unseen data. In principle, for example,
the 13 most frequently used paradigms of Spanish
verbs suffice to cover 90% of all verbs (per token).
A useful application of this is rapid language re-
source development—one can elicit from a speaker
a small number of well-chosen inflection tables, e.g.
all forms of specific nouns, verbs, adjectives; gener-
alize these inflection tables into paradigms; and use
this information to deduce the possible morphologi-
cal classes for a majority of unseen word forms.
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Future work
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Finnish (consonant gradation)
x1+t+x2

x1+d+x2+t
x1+d+x2+n
x1+t+x2+jen
x1+t+x2+a
...

ma.to
ma.dot
ma.don
ma.to.jen
ma.to.a
...

t in open syllable onsets, d in closed syllable onsets

Learn morphophonology
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Navajo

naashnish > x1+aash+x2
neiilnish   > x1+eiil+x2

...

x1=n
x2=nish

Learn “subparadigms"
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LCS = h

Ungeneralizable paradigm 
in Navajo
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Summary
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An LCS-based method for inferring paradigmatic 
behavior yields competitive generalizations when 
coupled with a discriminative classifier 

Relatively easy to implement - model is human readable 

Fairly language-independent approach (gives paradigms 
that capture infixation, templatic processes, etc.) 



NAACL-HLT 2015 Paradigm classification in supervised learning of morphology

Thank you
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Code and language data at:

https://svn.spraakbanken.gu.se/clt/naacl/2015/extract

Stand-alone paradigm extractor tool:

http://pextract.googlecode.com

https://svn.spraakbanken.gu.se/clt/naacl/2015/extract
http://pextract.googlecode.com

