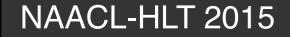


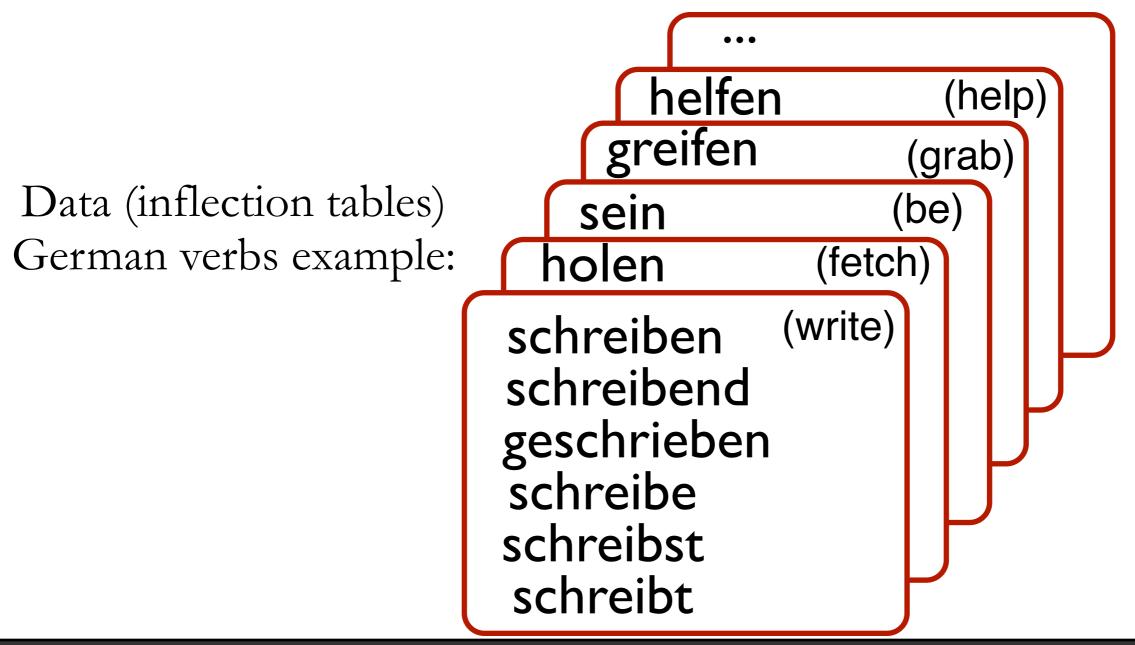
Paradigm classification in supervised learning of morphology

Malin Ahlberg Markus Forsberg Mans Hulden



Overview

Goal: learn to inflect (unseen) words from annotated data in a language-independent way

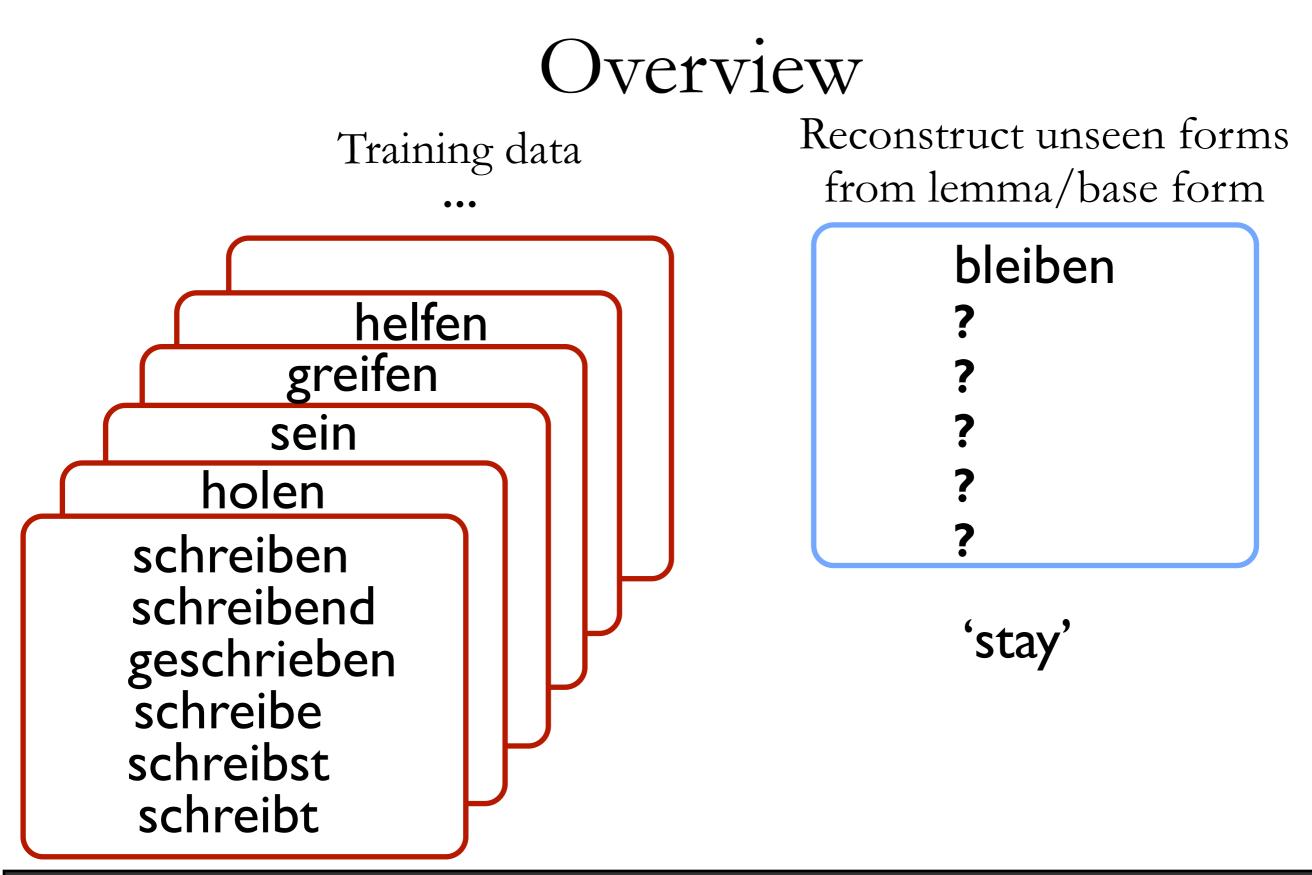


University of Colorado Boulder

Overview

Goal: learn to inflect (unseen) words from annotated data in a language-independent way

University of Colorado Boulder


Overview

Goal: learn to inflect (unseen) words from annotated data in a language-independent way

helfen (help) greifen (grab) Data (inflection tables) (be) sein German example: holen (fetch) holend geholt hole holst holt

Previous work (recent)

Dreyer and Eisner (2011)

- Semi-supervised Bayesian model that learns from a small amount of "seed paradigms"

Durrett and DeNero (2013)

- Supervised discriminative model that learns rule transformations to reconstruct paradigms from many examples


Ahlberg et al. (2014) - Symbolic model; adaptable to supervised/semisupervised settings

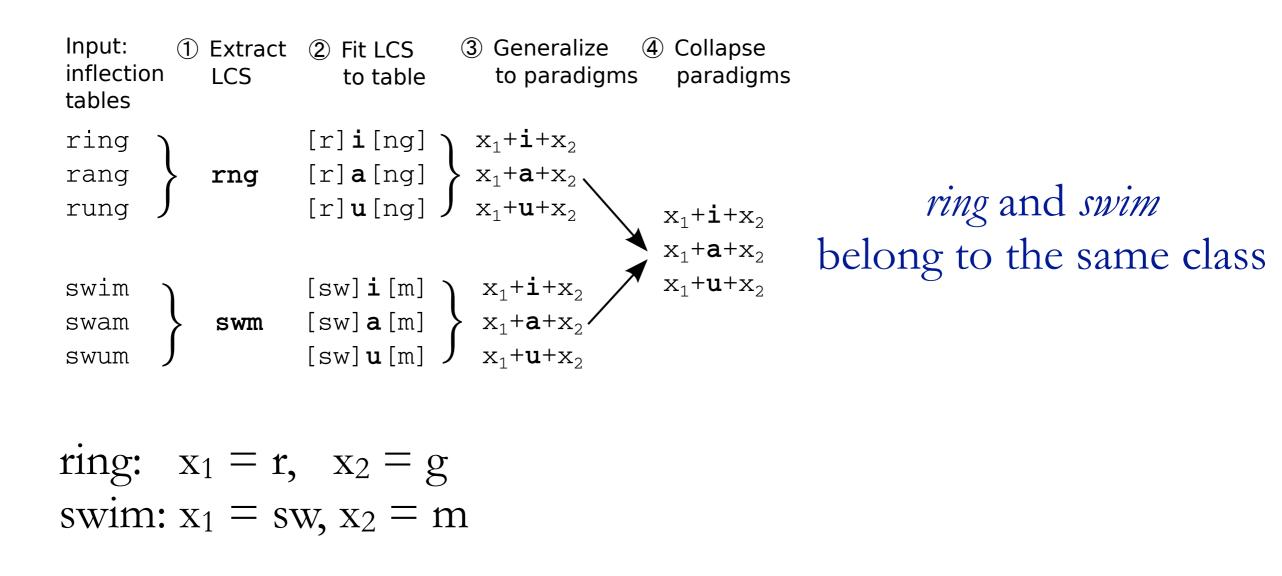
University of Colorado Boulder

Method

Produce an abstract representation of inflection paradigms by extracting the longest common subsequence (LCS) from each inflection table, and assigning piecewise discontinuous subsequences to variables Ahlberg et al. (2014), Hulden (2014)

Toy example (English verbs)

Input: ① inflection tables	Extract LCS
ring)	
rang	rng
rung J	
swim)	
swam >	swm
swum 丿	


Toy example (English verbs)

Input: ① inflection tables	Extract LCS	② Fit LCS to table
ring)		[r] i [ng]
rang >	rng	[r] a [ng]
rung J		[r] u [ng]
swim)		[sw] i [m]
swam	swm	[sw] a [m]
swum)		[sw] u [m]

Toy example (English verbs)

Collapsing paradigms

WIKTIONARY the free dictionary

Data	Input: inflection tables	Output: abstract paradigms
DE-VERBS	1827	140
DE-NOUNS	2564	70
S-VERBS	3855	97
T-VERBS	7049	282
FI-NOUNS-ADJS	6200	258

I-NCOmparison:

¹⁵Thompson (1998) lists 79 "classes" of Spanish verbs

Kotus (2007) Finnish grammar uses 51 noun (& adj) paradigms

*Wiktionary data from Durrett and DeNero (2013)

NAACL-HLT 2015

Paradigm classification in supervised learning of morphology 11

DE-VERBS DE-NOUNS ES-VERBS T-VERBS

Reconstruction

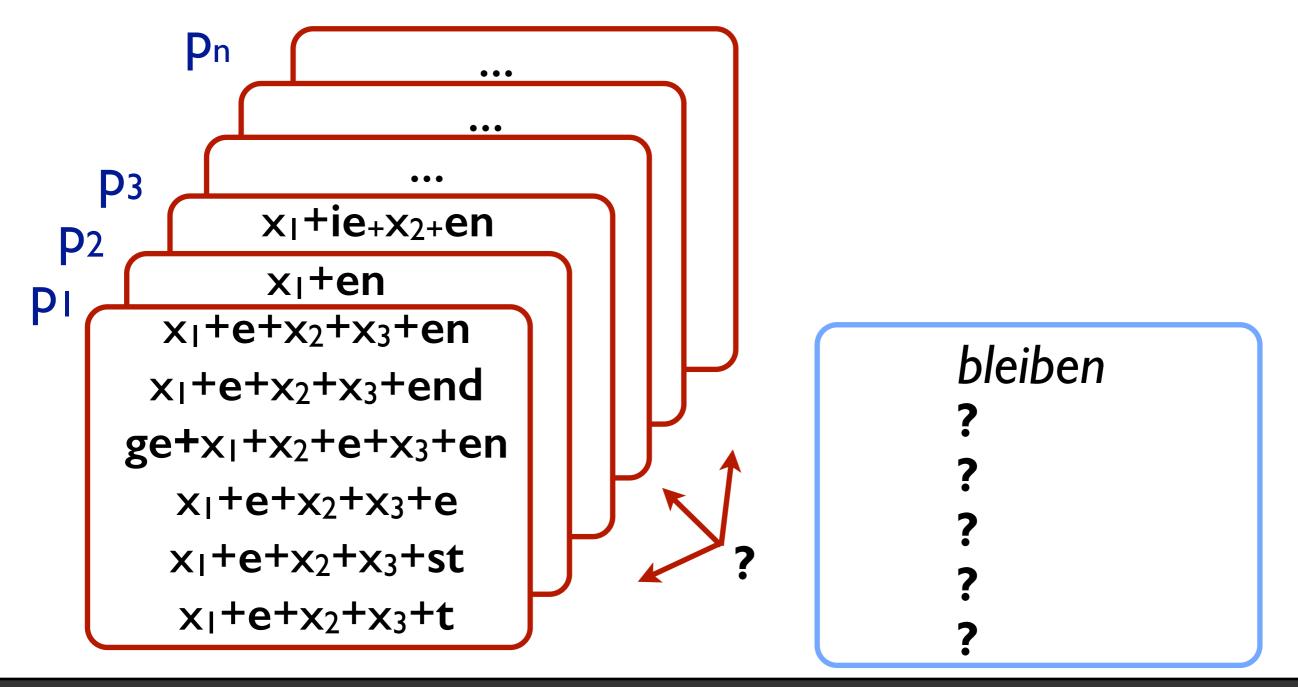
An inflection table can be reconstructed from a lemma according to an abstract paradigm:

lemma	abstract paradigm guess
show	X1
	$x_1 + ed$
	$x_1 + n$
	$x_1 + ing$
panic	\mathbf{X}_1
	$x_1 + ked$
	$x_1 + ked$
	$x_1 + king$

NAACL-HLT 2015

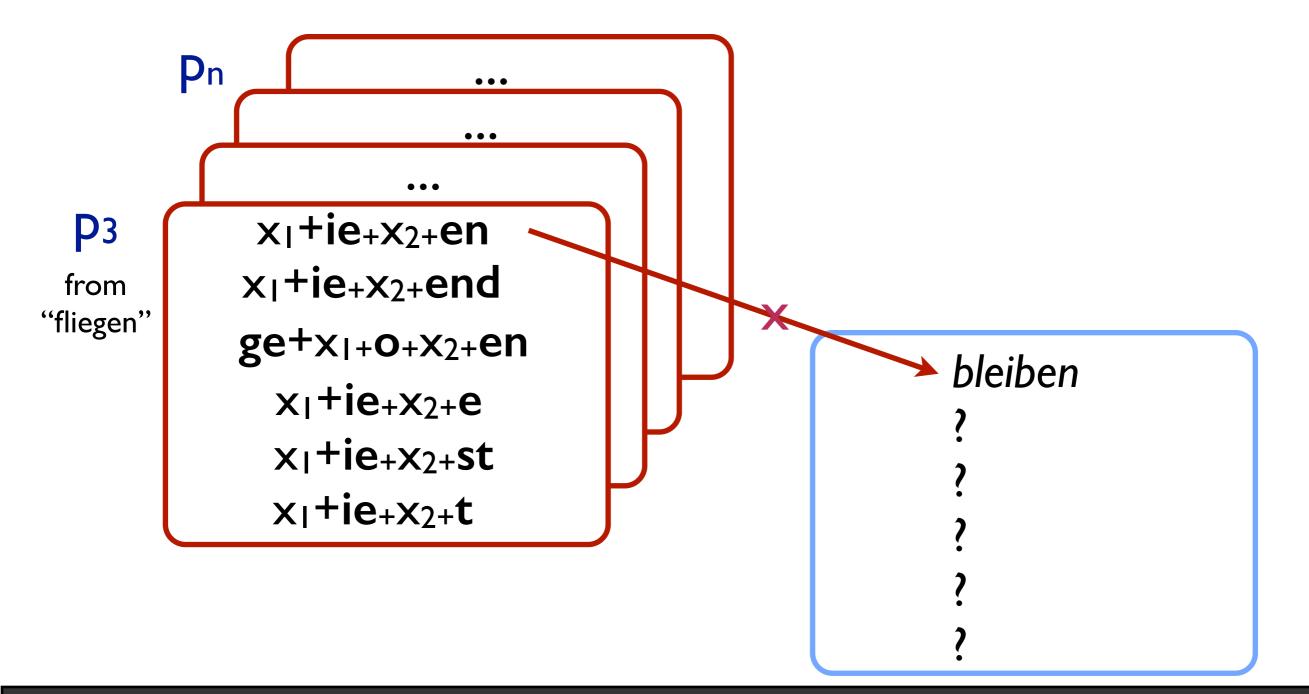
Reconstruction

An inflection table can be reconstructed from a lemma according to an abstract paradigm:


lemma	abstract paradigm guess
show showed shown	x_1 $x_1 + ed$ $x_1 + n$
showing	$x_1 + ing$
panic panicked panicked panicking	$\begin{array}{l} x_1 \\ x_1 + ked \\ x_1 + ked \\ x_1 + king \end{array}$

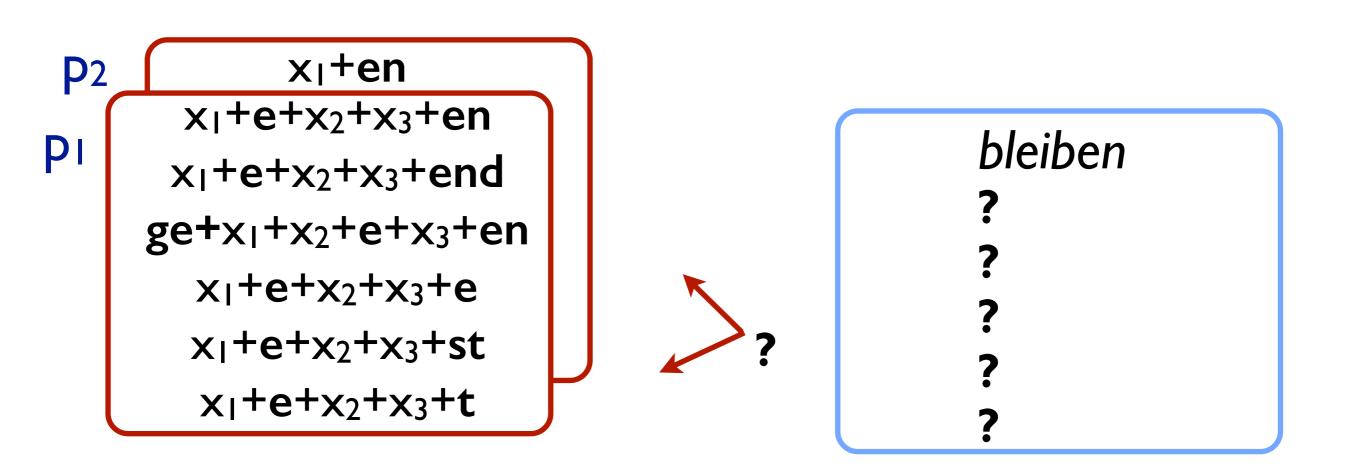
NAACL-HLT 2015

Reduces to choosing the appropriate paradigm for the unknown lemma

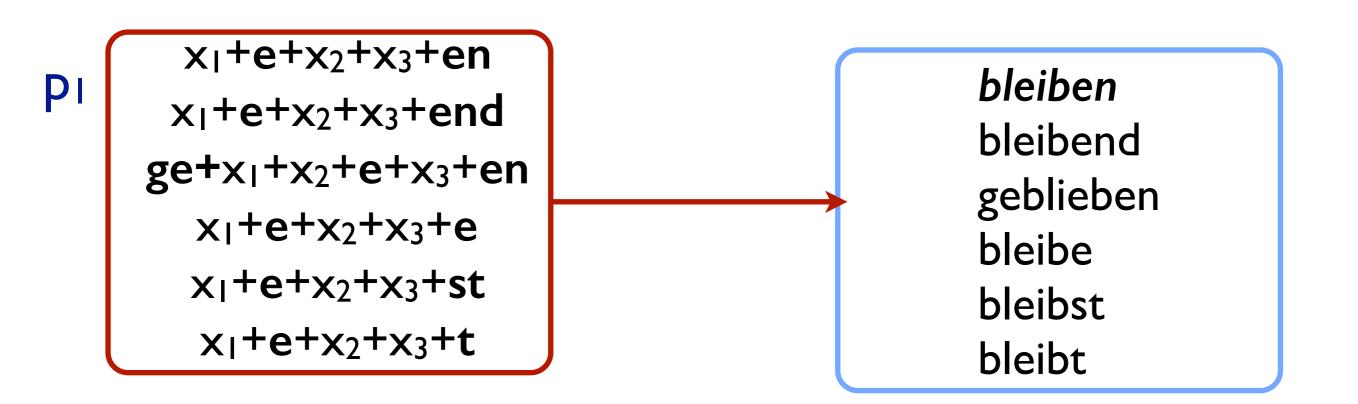


NAACL-HLT 2015

(many competing paradigms can be ruled out by simple inspection)



NAACL-HLT 2015


Train a classifier for the remaining choices

After classification, complete table can be reconstructed from lemma

SVM classifier

- Only use lemmas seen in paradigms as training data
- Use edge-anchored substrings as binary features, e.g.

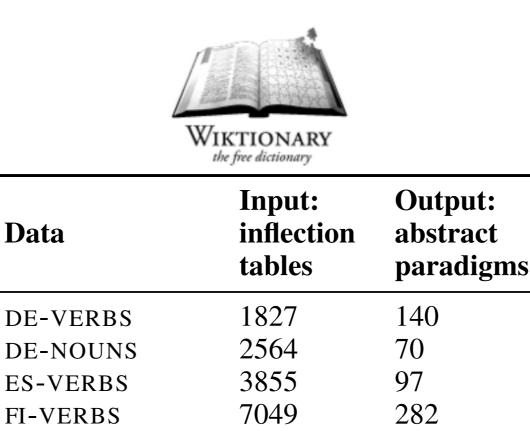
 $f("lesen") = \{\#l, \#les, \#lese, \#lesen, lesen\#, esen\#, sen\#, en\#, n\#\}$

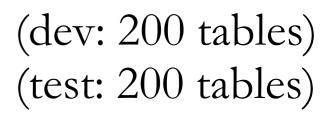
- Linear SVM (one-vs-the-rest multi-class)
- Feature selection using dev set on maximum length of prefix/suffix to use (3-9 symbols), and whether to include prefix/suffix at all
- (Other types of substring-features were explored, with worse results)

Evaluation

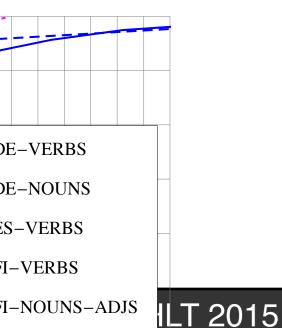
(1) Inflection tables for three languages from Wiktionary tables (Durrett & DeNero, 2013): *Finnish* (nouns/adjectives, verbs), *Spanish* (verbs), *German* (nouns, verbs)

(2) Additional inflection tables gathered from various resources for: *Catalan* (nouns, verbs), *English* (verbs), *French* (nouns, verbs), *Galician* (nouns, verbs), *Italian* (nouns, verbs), *Portuguese* (nouns, verbs), *Russian* (nouns), *Maltese* (verbs)


(1) tables very clean, no defective forms/parallel forms
(2) contains defective tables, parallel forms (cactuses ~ cacti), etc.


Evaluation

(1) Inflection tables for three languages from Wiktionary tables (Durrett & DeNero, 2013): Finnish (nouns/adjectives, verbs), Spanish (verbs), German (nouns, verbs)



6200

FI-NOUNS-ADJS

20

Paradigm classification in supervised learning of morphology

258

Results (1)

Data	Per table accuracy			Per form accuracy			Oracle acc. per form (table)
	SVM	AFH14	D&DN13	SVM	AFH14	D&DN13	
DE-VERBS	91.5	68.0	85.0	98.11	97.04	96.19	99.70 (198/200)
DE-NOUNS	80.5	76.5	79.5	89.88	87.81	88.94	100.00 (200/200)
ES-VERBS	99.0	96.0	95.0	99.92	99.52	99.67	100.00 (200/200)
FI-VERBS	94.0	92.5	87.5	97.14	96.36	96.43	99.00 (195/200)
FI-NOUNS-ADJS	85.5	85.0	83.5	93.68	91.91	93.41	100.00 (200/200)

Oracle = always picks the best paradigm

SVM = current method AFH14 = Ahlberg, Forsberg, Hulden (2014) [LCS + suffix-based classifier] D&DN13 = Durrett & DeNero (2013) [discriminative string transformation]

Results (2)

mfreq=pick most "popular" paradigm

Data	#tbl	#par	mfreq	AFH14	SVM	Oracle
DE-N	2,210	66	18.99	76.09	77.68	98.99
DE-V	1,621	125	52.77	65.02	83.59	95.45
ES-V	3,243	90	70.42	92.25	93.48	96.59
FI-N&A	4,000	233	26.52	83.20	82.84	98.12
FI-V	4,000	204	43.04	91.88	91.64	94.76
MT-V	826	200	10.68	18.83	38.64	85.63
CA-N	4,000	49	44.12	94.00	94.92	99.44
CA-V	4,000	164	60.44	90.76	93.40	98.48
EN-V	4,000	161	77.12	89.40	90.00	97.40
FR-N	4,000	57	92.16	91.60	93.96	98.72
FR-V	4,000	95	81.52	93.72	96.48	98.80
GL-N	4,000	24	88.36	90.48	95.08	99.80
GL-V	3,212	101	45.21	58.92	60.87	98.95
IT-N	4,000	39	83.84	92.32	93.76	99.40
IT-V	4,000	115	63.96	89.68	91.56	98.68
PT-N	4,000	68	74.52	88.12	90.88	99.04
PT-V	4,000	92	62.00	76.96	80.20	99.20
RU-N	4,000	260	15.76	64.12	66.36	96.80

mean (SVM) = 84.18

accuracy per table (entire inflection table correctly reconstructed)

NAACL-HLT 2015

Results	(2)
---------	-----

mfreq=pick most "popular" paradigm

Data	#forms	mfreq	AFH14	SVM	Oracle
DE-N	8	57.36	89.72	90.25	99.69
DE-V	27	87.35	96.12	95.28	99.20
ES-V	57	93.80	98.72	98.83	99.47
FI-N&A	233	52.15	91.03	91.06	98.95
FI-V	54	70.38	95.27	95.22	96.76
MT-V	16	39.75	54.66	61.15	95.49
CA-N	2	71.30	96.89	97.33	97.93
CA-V	53	86.89	98.18	98.89	99.77
EN-V	6	91.43	95.93	96.16	99.28
FR-N	2	93.24	92.48	94.68	99.08
FR-V	51	91.47	97.09	98.33	99.02
GL-N	2	91.92	92.82	95.38	99.78
GL-V	70	94.89	98.48	98.32	99.67
IT-N	3	89.36	93.38	94.59	97.44
IT-V	51	89.51	97.76	98.21	99.64
PT-N	4	83.35	89.78	91.97	98.60
PT-V	65	92.62	96.81	97.20	99.68
RU-N	12	25.16	88.19	89.35	99.15

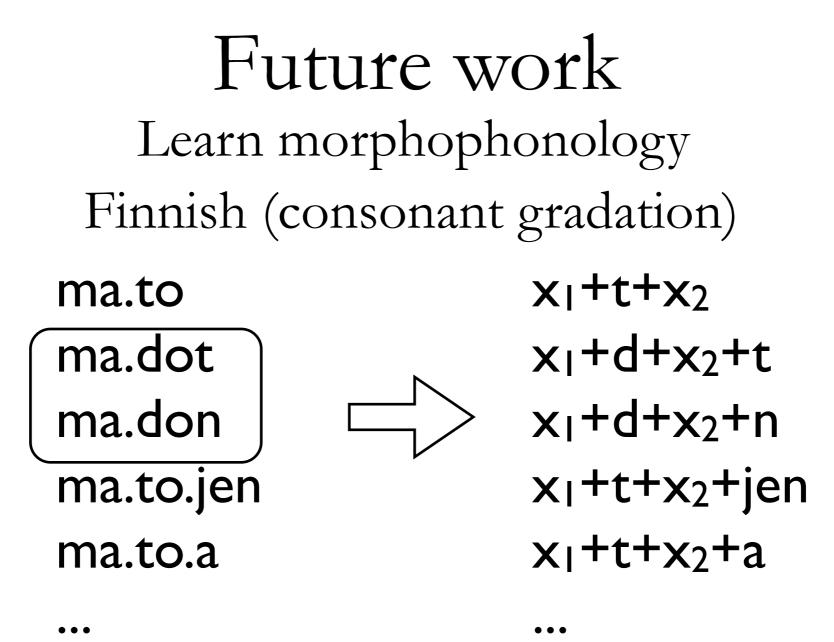
mean (SVM) = 93.46

accuracy per form (entire inflection table correctly reconstructed)

NAACL-HLT 2015

Discussion

Best:	Data	#forms	mfreq	AFH14	SVM	Oracle
	CA-V	53	86.89	98.18	98.89	99.77


	Data	#forms	mfreq	AFH14	SVM	Oracle
Worst:	MT-V	16	39.75	54.66	61.15	95.49

Maltese has 'mixed' lexicon of Semitic, Italian & Sicilian, English

Maltese exhibits Semitic interdigitation (root-and-pattern paradigms) in verbs

University of Colorado Boulder

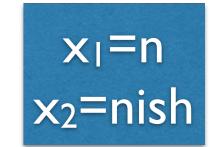
t in open syllable onsets, d in closed syllable onsets

NAACL-HLT 2015

Verb [edit]

naalnish

- 1. he/she is working
- 2. he/she is employed


Conjugation [edit]

Learn "subparadigms"

IMPERFECTIVE	singular	duoplural	plural
1st person	naashnish	neiilnish	nideiilnish
2nd person	nanilnish	naołnish	nidaałnish
3rd person	naal	nidaalnish	
4th person	nijil	nidajilnish	
PERFECTIVE	singular	duoplural	plural
1st person	nishishnish	nishiilnish	nidashiilnish
2nd person	nishínílnish nishoołnish		nidashoołnish
3rd person	naas	nidaashnish	
4th person	nijisł	nidajishnish	

UNIVERSITY OF GOTHENBURG

Related terms [edit]

- IMPERFECTIVE: -nish
- PERFECTIVE: -nish
- FUTURE: -nish
- ITERATIVE: -nish
- OPTATIVE: -nish

$\begin{array}{ll} naashnish > x_1 + aash + x_2 \\ neiilnish > x_1 + eiil + x_2 \end{array}$

Verb [edit]

hałeeh

Ungeneralizable paradigm in Navajo LCS = h1. he/she is causing it, generating it

Conjugation [edit]

IMPERFECTIVE	singular	duoplural	plural
1st person	hashłeeh	hwiidleeh	dahwiidleeh
2nd person	hółeeh	hohłeeh	dahohłeeh
3rd person	hałeeh		dahałeeh
4th person	hojiłeeh		dahojiłeeh
PERFECTIVE	singular	duoplural	plural
1st person	hosélíí	hosiidlíۣí	dahosiidlíí′
2nd person	hosíníťjí′	hosoołjį́	dahosoołįį́/
3rd person	hasłįį́ '		dahasłįį́/
4th person	hojisłįį́		dahojisłįį́/

Summary

An LCS-based method for inferring paradigmatic behavior yields competitive generalizations when coupled with a discriminative classifier

Relatively easy to implement - model is human readable

Fairly language-independent approach (gives paradigms that capture infixation, templatic processes, etc.)

Thank you

Code and language data at:

https://svn.spraakbanken.gu.se/clt/naacl/2015/extract

Stand-alone paradigm extractor tool:

http://pextract.googlecode.com

