# A Phoneme Clustering Algorithm Based on the Obligatory Contour Principle

### Mans Hulden

mans.hulden@colorado.edu https://github.com/cvocp/cvocp (💭)

## Hierarchical Clustering

### Objective

Divide all phonemes/character types in a corpus into two sets S' and S" such that an alternation-counting objective function is maximized.

This is motivated by the **Obligatory Contour Principle** in phonology which says that globally, "similarity" is avoided between adjactent segments (and tiers), particularly as regards place of articulation, and tone

### Example corpus = abracadabra

| $\wedge^{+1}$ $\wedge^{+1}$ |                                |
|-----------------------------|--------------------------------|
| abráčadabra                 | (bad split, 2 alternations)    |
| abracadabra                 | (better split, 6 alternations) |
| abracadabra                 | (best split, 8 alternations)   |

### Result: $S' = \{a\} S'' = \{b,c,d,r\}$

### **Top-level algorithm (Simulated annealing)**

- 1. Randomly divide the set S into S' and S''
- 2. Draw an integer *p* from Uniform(1..K), where K depends on a cooling schedule
- 3. Swap p random segments between S' and S''
- 4. If corpus score is higher after swap, keep swap else discard swap. Go to (2).

### **Recursion & Example**

After the optimal top-level split is found as above, we can proceed resursively by either splitting on the **residue**, or dividing the corpus into two new subcorpora (tiers) and proceed. This gives us two variants of the main algorithm:

### Two variants



## Phonemic Experiment (I)

- Corpora from nine languages are featured (phonemic data) • Measure how often resulting splits are describable by a single distinctive feature (both residue and tier-based methods)
- Separately see if top-level split is always consonants/vowels
- Compare against other algorithms for unsupervised discovery of C/V

| Language  | Source                         | Sample                                             |
|-----------|--------------------------------|----------------------------------------------------|
| Arapaho   | (Cowell and Moss Sr, 2008)     | towohei hiiθeti? tohnooke? toothei?eihoo           |
| Basque    | Wikipedia + g2p                | me∫ikoko iriburuko espet∫e batean sartu zuten et   |
| English   | (Brent and Cartwright, 1996)   | ju want tu si ðə bok lok ðerz ə boi wið hiz hæt.   |
| Finnish   | (Aho, 1884) + g2p              | vai oli eilen kolmekymmentæ kotoapæinkø se m       |
| Hawaiian  | Wikipedia + g2p                | ?o ka ?ōlelo hawai?i ka ?ōlelo makuahine a ka p    |
| Hungarian | (Gervain and Erra, 2012)       | idʒ nintʃ jɒj dɛ tʃɛtʃɛ hol ɒ montʃikɒ hol vɒn ɒ m |
| Italian   | Wikipedia + g2p                | t∫itta eterna kon abitanti e il komune piu popolos |
| Polish    | (Boruta and Jastrzebska, 2012) | gdzie jest bartuc gdzie jest ne ma xodz tu a kuku  |
| Spanish   | (Taulé et al., 2008) + g2p     | un akuerdo entre la patronal i los sindikatos fran |
|           |                                |                                                    |

### Results (I)

|           |               |         |           |                  | i u y |                  | [-high]<br>a e o æ ø | h l ŋ p r s                                      |
|-----------|---------------|---------|-----------|------------------|-------|------------------|----------------------|--------------------------------------------------|
| Language  | Splits<br>OCP |         | Sp<br>OCI | olits<br>P(tier) | i (OC | ( <b>P</b> ) e   | C/V+low]<br>(Sukh.)  | C/V[-del rel]<br>h(M&M)                          |
| Arapaho   | 9/14          | (62.29) | 11/15     | (73.34)          | 100   | back]            | 100.0                | $100.0^{+\text{cons}}$                           |
| Basque    | 8/14          | (57.14) | 16/20     | (80.00)          | loo   | .0 <sup>eø</sup> | °100.Ô               | $^{\text{n}}$ $^{\text{s}}$ 100.0 $^{\text{yr}}$ |
| English   | 3/12          | (25.00) | 15/25     | (60.00)          | 100   | .0               | 21.62                | 94.59 <sup>[+th</sup>                            |
| Finnish   | 14/16         | (87.50) | 17/19     | (89.47)          | 100   | $.0^{e}$         | 100.0                | 100.0 <sup>n</sup>                               |
| Hawaiian  | 4/5           | (80.00) | 8/12      | (66.67)          | 100   | .0               | 100.0                | 92.30                                            |
| Hungarian | 10/20         | (50.00) | 21/31     | (67.74)          | 100   | .0               | 96.97                | 100.0                                            |
| Italian   | 7/11          | (63.64) | 15/20     | (75.00)          | 100   | .0               | 100.0                | 100.0                                            |
| Polish    | 10/21         | (47.61) | 23/33     | (69.70)          | 100   | .0               | 100.0                | 97.30                                            |
| Spanish   | 10/15         | (66.67) | 16/21     | (76.19)          | 100   | .0               | 100.0                | 100.0                                            |

Example splits (I - residue method)

### Hawaiian





## C/V distinctions (II)

- ≏ta me∫iko . . .
- natti ajelee ... po?e maoli ... nont∫i itt ɒ . . . so ditalia . . .
- tso xova∫ . . .
- nθeses sobre ...

djkmntv

Inventory

37

20

13

33

22

37

22

j k**size** d m t v t] [-coronal] [+voice] n j k 21 t d m v

- Evaluate ability to infer C/V (syllabic/negregyllabic) of the palatal approximant /j/, incorrect in gold.
  Evaluate ability to infer C/V (syllabic/negregyllabic) of the palatal approximant /j/, incorrect in gold.
  distinctions from graphemic data C
  Ukrainian iotated vowel sounds /ji/, tinefear if /o were of consonall in second split:
- Data set from Kim & Snyder (2018): a Bible corpusuinges: high tone/long vowel in Bantu languages. 503 languages
- Compare with other unsupervised algorithms:
  - Sukhotin (1962)
  - Moler & Morrison (1983)
  - Kim & Snyder (2013)
- Learn distinctions:
  - Individually (one language at a time) • All together (as one big corpus)
- Accuracy:
  - per token (for comparison w/ K&S) • per type

# Results (II)

|            |       | OCP   | Sukhotin | M&M   | K&S   |
|------------|-------|-------|----------|-------|-------|
| Individual | Type  | 95.10 | 92.50    | 94.15 | _     |
|            | Token | 96.55 | 93.65    | 95.59 | 95.99 |
| All        | Type  | 96.43 | 96.43    | 89.79 | _     |
|            | Token | 99.89 | 99.89    | 99.79 | 98.55 |

• Actual accuracy even higher due to 5 errors in gold

### Short manuscripts

Experiment example with extremely short manuscripts

- "Birch Bark Letter" no 292 (a), transcribed (b) • Oldest known text in Finnish languages (13th C.)
  - 54 letters
  - Contains variable spellings of the same word
  - Splits in (c) [residue method]
  - C/V in (f); (d) = M&M; (e) = Sukhotin • Errors marked in red



## Tier-based algorithm & coronals

Cymre, enor, should be CIRILLIC SWALL LEITER DARRED O, a vower.



• Results on graphemic data from 14 languages from Universal Dependencies corpora 2.0 (Nivre et al., 2017), with hypothesized +coronal split shown:

| Language   |     | Se  | eco | ond | C  | ons           | son | ant | t G | rou | р   | #C   |
|------------|-----|-----|-----|-----|----|---------------|-----|-----|-----|-----|-----|------|
| Basque     | (c) |     |     | 1   | n  | $(\tilde{n})$ | r s |     | X   |     | Z   | 21   |
| Catalan    |     |     |     | 1   | n  |               | r s |     | X   |     | Z   | 22   |
| Irish      |     | d   |     | 1   | n  |               | r s |     |     |     |     | 13   |
| Dutch      |     |     | h   | 1   | n  |               | r   |     | X   |     | Z   | 19   |
| Estonian   |     |     | h   | 1   | n  |               | r s |     |     |     |     | 16   |
| Finnish    |     |     | h   | 1   | n  |               | r s | (š) | (x) |     | (z) | 21   |
| German     |     | j   |     | 1   | n  |               | r s |     | X   |     | Z   | 21   |
| Indonesian |     |     |     | 1   | n  |               | r s |     |     |     | Z   | 20   |
| Italian    |     |     | h   | 1   | n  |               | r s |     |     | (y) |     | 21   |
| Latin      |     | d   | h   | 1   | n  |               | r s |     |     |     |     | 16   |
| Latvian    | č   | j   |     | ķ1ļ | n  | ņ             | r s |     |     |     | Z   | ž 24 |
| Lithuanian |     | j   |     | 1   | n  |               | r s | š   |     |     | Z   | ž 19 |
| Portuguese | ç   | j   |     | 1   | n  | (ñ)           | r s |     | X   |     |     | 24   |
| Slovak     | c   | ď j |     | 11  | (n | ň             | r s | š   |     |     | Z   | ž 26 |

### Wrap-up

- The OCP seems to "hold" for syllabic/non-syllabic and coronal/noncoronal place of articulation, and frontness/backness of vowels
- Remaining splits are not robust along distinctive feature lines
- Algorithm is very good at detecting consonant/vowel (syllabic/nonsyllabic) distinctions; better than previous efforts on all data sets
- Tier-based variant of algorithm is more robust and detects coronals with high accuracy

### References

Young-Bum Kim and Benjamin Snyder. 2013. Unsupervised consonant-vowel prediction over hundreds of languages. In Proceedings of ACL. Sofia, Bulgaria, pages 1527–1536.

Cleve Moler and Donald Morrison. 1983. Singular value analysis of cryptograms. American Mathematical Monthly pages 78-87.

Boris V. Sukhotin. 1962. Eksperimental'noe vydelenie klassov bukv s pomoshch'ju EVM. Problemy strukturnoj lingvistiki pages 198–206.