Computational Linguistics
Curriculum at CMU

Noah Smith
nasmith@cs.cmu.edu

TeachCL-08 June 19, 2008 Columbus, OH, USA
The Language Technologies Institute

- One of ~6 CS departments at CMU
- ~25 faculty (many cross-appointed)
- Graduate programs only: M.S. (~45) and Ph.D. (~84)
- All students: research from day one, two courses per semester (+ research), total ~8 courses, ~6 from LTI
NLP/CL Faculty at CMU

Black
Carbonell
Cohen
Fahlman
Frederking
Lafferty
Lavie
Levin
MacWhinney
Mitamura
Mitchell
Nyberg
Rosé
Rosenfeld
Smith
Offerings in 2008 (Spring + Fall)

- 4 + 6 graduate courses
 - Algorithms for NLP (Lavie & Frederking)
 - Grammars and Lexicons (Levin & Mitamura)
 - Lang. & Stats. I (Rosenfeld) & II (Smith)
 - Also: IR, Software Engineering I & II, ASR, Research Design & Writing, Services

- 3 + 4 seminar or project courses: Grammar Formalisms, MT, Summarization, Dialog (2), Speech Translation, IR

- Many non-LTI electives in CS, ML, Robotics ...
Undergraduate Offerings

New in 2007-2008: senior undergraduate courses in IR (Callan), NLP (Smith), and Speech (Black).

Previous course: “Human Language Technologies,” a senior/masters course covering IR, NLP, Speech, MT. Not consistently successful.
On Programming

- We’re part of the School of Computer Science.
- But everyone at CMU seems to know how to write code. (Business school professors, philosophy students in my course, ...)
- Students who don’t know programming have to work much harder.
- But to succeed, they do need to learn to program.
- (And they usually do succeed.)
Teaching CL without any programming is as bad as teaching CL without any linguistics or corpora or statistical methods.

CL is not a theoretical field.

Students learn best by doing.

Programming proficiency, especially in some modern high-level languages, may be attainable fairly quickly.
CMU has a widespread “computing culture.”

There’s room in the LTI curriculum for 4 full CL/NLP courses and many topics courses.

Good news: can be leisurely, and some overlap is okay, even beneficial

Bad news: less pressure to evolve (just add more courses to the sequence?)

We have it easy!
Extra Slides
Grammars & Lexicons
(Lori Levin & Teruko Mitamura)

- Breadth of cross-linguistic phenomena (morphology, syntax)
- Analyzing linguistic data
- Generalization and prediction in computational systems
- Lexical-Functional Grammar
Algorithms for NLP
(Alon Lavie & Bob Frederking)

- Algorithm analysis, complexity theory; languages and automata
- Fundamental symbolic algorithms and representations for morphological, syntactic, and semantic processing
- Emphasis on recognition and parsing algorithms
Language and Stats. I

(Roni Rosenfeld)

- Basics of statistical estimation (bias, variance, consistency, efficiency)
- Basics of information theory and the source-channel paradigm
- Language modeling with Markov and hidden Markov models
- Classification and regression, applications in NLP
Language and Stats. II
(Noah Smith)

- Statistical models for shallow and deep NLP (sequence labeling, segmentation, parsing)
- Generative and discriminative methods for prediction in structured spaces
- Disambiguation and inference algorithms
- Unsupervised and semisupervised statistical learning in NLP