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Abstract 
This paper describes a new method for recognizing whether a student’s response to an auto-
mated tutor’s question entails that they understand the concepts being taught.  We demonstrate 
the need for a finer grained analysis of answers than is supported by current tutoring systems or 
entailment databases and describe a new representation for reference answers that addresses 
these issues, breaking them into detailed facets and annotating their entailment relationships to 
the student’s answer more precisely.  Human annotation at this detailed level still results in sub-
stantial interannotator agreement, 86.2%, with a Kappa statistic of 0.728.  We also present our 
current efforts to automatically assess student answers, which involves training machine learn-
ing classifiers on features extracted from dependency parses of the reference answer and stu-
dent’s response and features derived from domain independent lexical statistics.  Our system’s 
performance, as high as 75.5% accuracy within domain and 68.8% out of domain, is very en-
couraging and confirms the approach is feasible.  Another significant contribution of this work 
is that it represents a significant step in the direction of providing domain independent semantic 
assessment of answers.  No prior work in the area of tutoring or educational assessment has at-
tempted to build such domain independent systems.  They have virtually all required hundreds 
of examples of learner answers for each new question in order to train aspects of their systems 
or to hand craft information extraction templates. 

1 Introduction 

Truly effective dialog and pedagogy in an Intelligent Tutoring System (ITS) will only 
be achievable when systems are able to recognize the detailed entailment relationships 
between a student’s answer and the desired conceptual understanding.  However, most 
state of the art ITSs simply assess student answers as a whole, classifying them as cor-
rect (the student’s answer fully entails an understanding of the target concepts) or 
incorrect with no indication of which facets (fine-grained semantic components) of the 
concept the student contradicted, left unaddressed, appeared to understand, etc.  Fur-
thermore, virtually all current ITSs require a significant investment of labor to develop 
not just domain, but question dependent logic, parsers, knowledge structures, etc.  
These systems range from Finite State Machines and scripted dialogues (c.f., Pon-
Barry, Clark, Schultz, Bratt and Peters 2004) at the most rigid and labor intensive end, 
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through Latent Semantic Analysis based systems (c.f., Graesser, Hu, Susarla, Harter, 
Person, Louwerse and Olde 2001), which are more flexible in handling unconstrained 
input, but are incapable of effectively assessing short answers or pinpointing the prob-
lems in a student’s response, to hybrid machine learning based systems (c.f., Rosé, 
Roque, Bhembe and VanLehn 2003), which generally require 100-500 example stu-
dent responses to train a new classifier for each new question the system is expected 
to handle.  Furthermore, much of the parsing in the latter system is dependent on do-
main specific, hand coded rules, in order to capture the semantics of the domain lexi-
con and language. 

Many other ITS researchers are striving to provide more refined learner feedback 
(e.g., Aleven, Popescu and Koedinger 2001; Makatchev, Jordan and VanLehn 2004).  
However, they too are developing very domain dependent approaches, requiring a 
significant investment in hand crafted logic representations, parsers, knowledge based 
ontologies, and dialog control mechanisms.  Simply put, these domain dependent 
techniques will not scale to the task of developing general purpose Intelligent Tutor-
ing Systems and will not enable the long term goal of effective unconstrained interac-
tion with learners or the pedagogy that requires it. 

There is also a small, but growing, body of research in the area of scoring con-
structed (free text) responses to short answer questions (e.g., Callear, Jerrams-Smith 
and Soh 2001; Leacock and Chodorow 2003; Mitchell, Russell, Broomhead and Ald-
ridge 2002; Sukkarieh, Pulman and Raikes 2003).  In general, short answer con-
structed response scoring systems are designed for large scale assessment tasks and do 
not provide feedback regarding the specific aspects of answers that are correct or in-
correct, but merely output a raw score.  Again, these approaches all require in the 
range of 100-500 example student answers for each new test question to assist in the 
creation of information extraction (IE) patterns or to train a classifier. 

The work described in this paper represents a departure from previous ITS strate-
gies to assess whether understanding is entailed by the student’s response.  First, 
rather than strictly checking whether the student’s answer is a paraphrase of or entails 
the reference answer as a whole, we break the target conceptual knowledge down into 
fine grained facets, derived roughly from the typed dependencies in a parse of the ref-
erence answer, and check whether an understanding of these facets is entailed.  This 
allows us to pinpoint the facet of the reference answer that the student contradicted or 
did not address.  Second, rather than simply label the reference answer facet as being 
entailed or not, we provide a finer grained annotation to more precisely indicate the 
entailment relationship between the student’s answer and that facet of the reference 
answer. 

The paper begins with an overview of relevant prior work in paraphrasing and en-
tailment recognition.  We then highlight our current efforts to achieve more robust 
semantic understanding, including the development of a new evaluation framework, a 
large corpus to support the development, and our algorithms to detect the relationships 
between phrases that entail an understanding of a tutored concept and those that do 
not.  We present our current results, an error analysis, and issues requiring further re-
search.  We also discuss the application of this new paradigm to recognition of textual 
entailment outside the domain of ITSs. 
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2 Related Prior Work on Paraphrasing and Entailment 

In recent years, there has been a tremendous increase in interest in the areas of para-
phrase acquisition and textual entailment recognition.  Paraphrasing is the most com-
mon means for a learner to express a correct answer in an alternative form and Burger 
and Ferro (2005) note that even in the Pascal Recognizing Textual Entailment (RTE) 
challenge (Dagan, Glickman and Magnini 2005), 94% of the development corpus con-
sisted of paraphrases, rather than what they considered true entailments.  The target of 
much work on paraphrasing is acquiring IE patterns and fact based question answer-
ing (Agichtein and Gravano 2000; Ravichandran and Hovy 2002; Sudo, Sekine and 
Grishman 2001) and assumes there are several common ways of expressing the same 
information, (e.g., when and where someone was born).  Since fact based questions 
are also common in testing environments, these techniques could be useful in tutoring 
systems.  However, we are concerned more with questions that promote deeper rea-
soning than simple recollection and these techniques, at minimum, will require sig-
nificant modifications. 

Much of the remaining research on paraphrase acquisition presupposes parallel 
corpora (e.g., Barzilay and McKeown 2001; Pang, Knight and Marcu 2003) or compa-
rable corpora known to cover the same news topics (e.g., Barzilay and Lee 2003; Do-
lan, Quirk and Brockett 2004).  The parallel corpora are aligned at the sentence level, 
with sentence pairs considered to be paraphrases, and often lattices are created to form 
a database of potential paraphrasing transformations.  Following these techniques, 
Barzilay and McKeown found that only around 35% of the lexical paraphrases they 
extracted were synonyms; the remaining were 32% hypernyms, 18% siblings of a hy-
pernym, 5% from other WordNet relations, and 10% were not related in WordNet, 
emphasizing the need for relatively loose entailment recognition.  Other techniques 
also exist for lexical paraphrase acquisition, which do not rely on parallel corpora 
(e.g., Glickman and Dagan 2003).   

Research in the area of entailment also has much to offer.  Lin and Pantel (2001) 
extract inference rules from text by looking for dependency parse patterns that share 
common argument fillers; thus, taking Harris’ Distributional Hypothesis that words 
occurring in similar contexts tend to have similar meanings and extending it to de-
pendency paths or phrases.  The difficulty in directly applying this work to the task of 
answer assessment is that the inference rules extracted do not tend to have broad cov-
erage.  This is evidenced by the fact that several researchers participating in the Pascal 
RTE challenge made use of Lin and Pantel’s patterns and did not find them to im-
prove performance (e.g., Braz, Girju, Punyakanok, Roth and Sammons 2005; Raina, 
Haghighi, Cox, Finkel, Michels, Toutanova, MacCartney, de Marneffe, Manning and 
Ng 2005). 

The RTE challenge has brought the issue of textual entailment before a broad 
community of researchers in a task independent fashion. The challenge requires sys-
tems to make yes-no (or unknown in a RTE3 pilot task) judgments as to whether a 
human reading a text t would typically consider a second, hypothesis, text h to most 
likely be true.  The following example shows a typical t-h pair from the RTE chal-
lenge.  In this example, the entailment decision is no – and that is similarly the extent 
to which training data is annotated.  There is no indication of whether some facets of h 
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are addressed in t (as they are in this case) or conversely, which facets are not dis-
cussed or are explicitly contradicted. 

t: At an international disaster conference in Kobe, Japan, the U.N. humanitarian chief said 
the United Nations should take the lead in creating a tsunami early-warning system in 
the Indian Ocean. 

h: Nations affected by the Asian tsunami disaster have agreed the UN should begin work 
on an early warning system in the Indian Ocean. 

Submitters to the RTE challenge take a variety of approaches including lexical 
similarity approaches (e.g., Glickman, Dagan and Koppel 2005), lexical-syntactic fea-
ture similarity (e.g., Nielsen, Ward and Martin 2006), syntactic/description logic sub-
sumption (e.g., Braz et al. 2005), graph matching with semantic roles (Raina et al. 
2005), logical inference (e.g., Tatu and Moldovan 2007), discourse commitment – as-
sertion, presupposition, and conversational implicature – strategies (Hickl and Bensley 
2007), and numerous others.  In the following sections, we build on many of these 
techniques and, more importantly to our cause, we develop a more expressive para-
digm and representation framework for recognizing detailed entailment relationships 
at a fine grained level.  This framework is applicable to a wide variety of application 
areas and, in automated tutoring systems, we believe it will lead to more effective dia-
log and improved learning. 

3 Annotating a Corpus with Fine Grained Entailments 

3.1 The Representation 

The goal of the representation described here is to facilitate domain independent as-
sessment of student responses to questions in the context of a known reference answer 
and to perform this assessment at a level of detail that will enable more effective ITS 
dialog.  We have two key criteria for this representation: 1) it must be at a level that 
facilitates detailed assessment of the learner’s understanding, indicating exactly where 
and in what manner the answer did not meet expectations and 2) the representation 
and assessment should be learnable by an automated system. 

Rather than have a single yes or no entailment decision for the reference answer as 
a whole, we instead break the reference answer down into what we consider to be its 
finest grained compositional facets.  This roughly translates to the set of triples com-
posed of labeled dependencies in a dependency parse of the reference answer, but we 
use the word facet throughout this paper to generically refer to some part of a text’s 
(or utterance’s) meaning.  To facilitate system testing and the development of a mean-
ingful entailment corpus, this decomposition was performed manually in this work, 
but the process will be automated in the future.  The following illustrates how a sim-
ple reference answer (1) is decomposed into the answer facets (1a-d) derived from its 
dependency parse.  The dependency parse tree is shown in Figure 1.  As can be seen 
in 1b and 1c, the dependencies are augmented by thematic roles (c.f., Kipper, Dang 
and Palmer 2000) (e.g., Agent, Theme, Cause, Instrument, etc).   

(1) A long string produces a low pitch. 
(1a) NMod(string, long) 
(1b) Agent(produces, string) 
(1c) Product(produces, pitch) 
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(1d) NMod(pitch, low) 

 
Fig. 1. Dependency parse tree for example reference answer 

Breaking the reference answer down into fine grained facets provides the tutor’s 
dialog manager with a much finer grained assessment of the student’s response, but a 
simple yes or no entailment at the facet level still lacks semantic expressiveness with 
regard to the relation between the student’s answer and the facet in question.  For ex-
ample, did the student contradict the facet or completely fail to address it?  We also 
need to break the annotation labels into finer levels in order to specify more clearly 
these relationships.  These two issues – breaking the reference answer into fine 
grained facets and utilizing more expressive annotation labels – are the emphasis of 
the present work; the associated representation is central to the corpus and our entail-
ment system design. 

3.2 The Corpus 

Our work focuses on the critical years of learning to comprehend text, K-6.  We are 
currently in the process of implementing our ITS, and lacking live tutoring transcripts, 
we acquired data gathered from 3rd-6th grade students utilizing the Full Option Sci-
ence System (FOSS), upon which our ITS is based.  FOSS is a proven system that has 
been in use across the United States for over a decade (Lawrence Hall of Science 
2005).  Assessment is a major FOSS research focus, of which the Assessing Science 
Knowledge (ASK) project is a key component (Lawrence Hall of Science 2006). 
FOSS includes sixteen diverse science modules, spanning physical science, earth sci-
ence, life science, space science, scientific reasoning and technology, and for each 
module, ASK includes a set of assessment questions with reference answers.   

We used 287 constructed response questions taken from the ASK assessments cov-
ering their sixteen science teaching and learning modules.  These questions had ex-
pected responses ranging in length from moderately short verb phrases to several sen-
tences and could be assessed objectively, (representative questions with their 
reference answers and an example student answer are shown in Table 1).  We gener-
ated a corpus from a random sample of the students’ handwritten responses to these 
questions.  The only special transcription instructions were to fix spelling errors (since 
these would be irrelevant in our target spoken dialog environment), but not grammati-
cal errors (which would still be relevant), and to skip blank answers and non-answers 
similar in nature to I don’t know.  We transcribed approximately 15,400 student re-
sponses (roughly 100 per question for three test set modules (Environment, Human 
Body and Water) and forty per question for the remaining thirteen modules – section 
4.3 details the test sets).   
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Table 1 Sample ASK Qs with reference (R) and example student (A) answers. 

Human 
Body 

Q: Dancers need to be able to point their feet. The tibialis is the major muscle on 
the front of the leg and the gastrocnemius is the major muscle on the back of 
the leg. Describe how the muscles in the front and back of the leg work to-
gether to make the dancer’s foot point. 

R: The muscle in the back of the leg (the gastrocnemius) contracts and the muscle 
in the front of the leg (the tibialis) relaxes to make the foot point. 

A: The back muscle and the front muscle stretch to help each other pull up the 
foot. 

Structure 
of Life 

Q: Why is it important to have more than one shelter in a crayfish habitat with 
several crayfish? 

R: Crayfish are territorial and will protect their territory. The shelters give them 
places to hide from other crayfish. [Crayfish prefer the dark and the shelters 
provide darkness.] 

A: So all the crayfish have room to hide and so they do not fight over them. 
Magnet-
ism and 
Electricity 

Q: Lee has an object he wants to test to see if it is an insulator or a conductor. He 
is going to use the circuit you see in the picture. Explain how he can use the 
circuit to test the object. 

R: He should put one of the loose wires on one part of the object and the other 
loose wire on another part of the object (and see if it completes the circuit). 

A: You can touch one wire on one end and the other on the other side to see if it 
will run or not. 

3.3 The Annotation 

Manual corpus annotation is a two step process.1  First, each reference answer (as 
specified by the ASK research team) is decomposed by hand into its constituent fac-
ets.  Then for each student answer, the associated reference answer facets are anno-
tated to describe whether and how they are addressed by the student. 

3.3.1 Reference Answer Facet Extraction 

The reference answer facets are roughly extracted from the relations in a syntactic de-
pendency parse (Nivre, Hall, Nilsson, Chanev, Eryigit, Kubler, Marinov and Marsi 
2007) and a shallow semantic parse (Gildea and Jurafsky 2002).  These relations are 
then modified to increase the semantic value of the facets, as described in the follow-
ing paragraphs.  Figure 2 shows a typical dependency parse and the revised parse for a 
reference answer fragment that illustrates several of these modifications.  Example 2 
shows the decomposition of this same answer fragment into its constituent facets 
along with their glosses.  The rationale for these modifications is that they will facili-
tate more reasonable comparisons between the student and reference answers as 
elaborated below.   

(2) The brass ring would not stick to the nail because the ring is not iron. 
(2a)  NMod(ring, brass)  
(2aʼ) The ring is brass. 
(2b)  Theme_not(stick, ring) 
(2bʼ) The ring does not stick. 

                                                             
1 The corpus can be freely downloaded via the Resources page linked to the first author’s 

homepage at http://www.bltek.com/main-link/ 
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(2c)  Destination_to_not(stick, nail) 
(2cʼ) Something does not stick to the nail. 
(2d)  Be_not(ring, iron) 
(2dʼ) The ring is not iron. 
(2e)  Cause_because(2b-c, 2d) 
(2eʼ) 2b and 2c are caused by 2d. 

 
Fig. 2. Example dependency parse tree (a) and final representation (b) 

First, auxiliary verbs and their modifiers are reattached to the associated main verbs 
(e.g., in Figure 2, would, ring and not are reattached to stick).  Then relations that 
carry little semantic content are removed (e.g., dependencies involving most deter-
miners and auxiliaries).  The rationale for these changes is that a statistical analysis to 
determine whether the learner answer entails the dependency VC(would, stick) is un-
likely to yield more informative results then simply assessing the strictly lexical en-
tailment of stick, with similar results for SUB(would, ring) versus just ring; whereas, 
SUB(stick, ring) does add semantic value over its lexical constituents, requiring that 
the student express the full concept involving their relation.   

The parses were also modified to incorporate prepositions, copulas, terms of nega-
tion, and similar terms into the dependency type labels.  In Figure 2, these changes in-
cluded the incorporation of to, because, be, and the two instances of not into their as-
sociated dependencies.  The rationale for these changes is similar to that given above, 
(e.g., assessing the entailment of VMod(stick, to) provides little value over the lexical 
entailment of stick; whereas, Destination_to_not(stick, nail) carries significantly more 
semantics and will have a greater effect on entailment decisions).  Finally, we replace 
the standard dependency type labels with thematic roles where they are relevant.  This 
is predominantly verb arguments (the theme, destination and cause in Figure 2), but 
occasionally includes noun modifiers (e.g., in The water on the floor had a much 
larger surface area, we extract the facet Location_on(water, floor)).  We also add se-
mantic role relations that are not derivable from a typical dependency parse.  For ex-
ample, in the sentence ‘As it freezes the water will expand and crack the glass’, the re-
lation between water and crack is not included in the output of most dependency 
parsers, but we do extract a facet representing the Agent role that water plays in this 
event. 

The modifications described here result in much more compact and meaningful 
facets.  In Figure 2, the number of dependencies is reduced from fifteen (with the root) 
to five, including the replacement of the four semantically impoverished dependencies 
Det(ring, the), Sub(is, ring), VMod(is, not), and Prd(is, iron) with the single more ex-
pressive facet Be_not(ring, iron).  Example 3 illustrates the decomposition of another 
reference answer into its constituent parts along with their glosses. 
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(3) The string is tighter, so the pitch is higher. 
(3a)  Be(string, tighter) 
(3aʼ) The string is tighter. 
(3b)  Be(pitch, higher) 
(3bʼ) The pitch is higher. 
(3c)  Cause_so(3b, 3a) 
(3cʼ) 3b is caused by 3a 

3.3.2 Reference Answer Facet Entailment Annotation 

After analyzing much of the Physics of Sound data, we settled on the eight annotation 
labels noted in Table 2 (Nielsen and Ward 2007).  Descriptions of where each annota-
tion label applies and some of the most common annotation issues were detailed with 
several examples in the annotator guidelines and are summarized below.  We only an-
notate a student’s answer relative to the constituent facets of the associated reference 
answer, (i.e., for a given student answer, we annotate each facet of the corresponding 
reference answer with a label indicating the student’s apparent understanding of that 
facet; if the reference answer has six total facets, every corresponding student answer 
will be annotated with six labels, one per facet).  If the student also discusses concepts 
not addressed in the reference answer, those points are not annotated regardless of 
their quality or accuracy. 

Table 2. Facet Annotation Labels 

Label Brief Definition 
Assumed Reference answer facets that are assumed to be understood a priori based on the 

question 
Expressed Any Reference answer facet directly expressed or inferred by simple reasoning 
Inferred Reference answer facets inferred by pragmatics or nontrivial logical reasoning 
Contra-Expr Reference answer facets directly contradicted by negation, antonymous expres-

sions and their paraphrases 
Contra-Infr Reference answer facets contradicted by pragmatics or complex reasoning 
Self-Contra Reference answer facets that are both contradicted and implied (self contradic-

tions) 
Diff-Arg Reference answer facets where the core relation is expressed, but it has a differ-

ent modifier or argument 
Unaddressed Reference answer facets that are not addressed at all by the student’s answer 

Example 4 shows a question and a fragment of its reference answer broken down 
into its constituent facets with an indication of whether the facet is assumed to be un-
derstood a priori.  A corresponding student answer is shown in (5) along with its final 
annotation in 4a’-c’.  It is assumed that the student understands that the pitch is higher 
a priori (reference answer facet 4b), since this is given in the question (… Write a note 
to David to tell him why the pitch gets higher rather than lower) and similarly it is as-
sumed that the student will be explaining what has the causal effect of producing this 
higher pitch (facet 4c).  Therefore, unless the student explicitly addresses these facets 
they are labeled Assumed. 
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(4) Question: After playing the FOSS-ulele, David wrote his results in his lab notebook: 
Iʼm confused. When I pull down and tighten the string on the FOSS-ulele, then pluck 
the string, the pitch sounds HIGHER than it did before. But arenʼt I making the string 
longer when I pull the string? I thought a longer length produced a LOWER pitch. 
Whatʼs going on here?  
What is causing the pitch to be higher? Write a note to David to tell him why the pitch 
gets higher rather than lower. 
Reference Answer: The string is tighter, so the pitch is higher. 

(4a) Be(string, tighter), --- 
(4b) Be(pitch, higher), Assumed 
(4c) Cause(4b, 4a), Assumed 
(5) David this is why because you don't listen to your teacher. If the string is long, the pitch 

will be high. 
(4aʼ) Be(string, tighter), Diff-Arg 
(4bʼ) Be(pitch, higher), Expressed 
(4cʼ) Cause(4bʼ, 4aʼ), Expressed 

Since the student does not contradict the fact that the string is tighter (it can be both 
longer and tighter), we do not label this reference answer facet (4a’) Contradicted.  If 
the student’s response did not mention anything about either the string or tightness, 
we would annotate 4a’ as Unaddressed.  However, the student did discuss a property 
of the string, the string is long.  This parallels the reference answer facet Be(string, 
tighter) with the exception of a different argument to the Be relation, resulting in the 
annotation Diff-Arg.  This indicates to the tutor that the student expressed a related 
concept, but one which neither implies that they understand the facet nor that they ex-
plicitly hold a contradictory belief.  Often, this indicates the student has a misconcep-
tion.  For example, when asked about an effect on pitch, many students say things like 
the pitch gets louder, rather than higher or lower, which implies a misconception in-
volving their understanding of pitch and volume.  In this case, the Diff-Arg label can 
help focus the tutor on correcting this misconception.  Facet 4c’, expressing the causal 
relation between 4a’ and 4b’, is labeled Expressed, since the student did express a 
causal relation between the concepts aligned with 4a’ and 4b’.  The tutor then knows 
that the student was on track in regard to attempting to express the desired causal rela-
tion and the tutor need only deal with the fact that the cause given was incorrect.   

The Self-Contra annotation is used in cases like the response in example 6, where 
the student simultaneously expresses the contradictory notions that the string is tighter 
and that there is less tension. 

(6) The string is tighter, so there is less tension so the pitch gets higher. 
(4a”) Be(string, tighter), Self-Contra 
(4b”) Be(pitch, higher), Expressed 
(4c”) Cause(4b”, 4a”), Expressed 

Example 7 illustrates a case where a student’s answer is labeled Inferred, (facet 
7b).  In this case, the decision requires pragmatic inferences, applying the Gricean 
maxims of Relation, be relevant – why would the student mention vibrations if they 
did not know they were a form of movement – and Quantity, do not make your contri-
bution more informative than is required (Grice, 1975). 
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(7) Question: Kate said: “An object has to move to produce sound.” Do you agree with 
her? Why or why not? 
Reference Answer: “Agree. Vibrations are movements and vibrations produce sound.” 
Student Answer: Yes because it has to vibrate to make sounds. 

(7a) Root(root, agree), Expressed 
(7b) Be(vibration, movement), Inferred 
(7c) Agent(produce, vibrations), Expressed 
(7d) Product(produce, sound), Expressed 

There is no compelling reason from the perspective of the automated tutoring sys-
tem to differentiate between Expressed, Inferred and Assumed facets, since in each 
case the tutor can assume that the student understands the concepts involved.  How-
ever, from the systems development perspective there are three primary reasons for 
differentiating between these facets and similarly between facets that are contradicted 
by inference versus by more explicit expressions.  First, including the more difficult, 
often pragmatic, inferences in the training data could have negative effects on some 
machine learning algorithms.  Having separate labels allows one to remove the more 
difficult inferences from the training data, thus eliminating this problem.  The second 
rationale is that systems hoping to handle both types of inference might more easily 
learn the characteristics of each class if they are distinguished.  The third reason for 
separate labels is that it facilitates system evaluation, including the comparison of 
various techniques and the effect of individual features. 

3.3.3 Reference Answer Facet Entailment Annotation Results 

We evaluate our annotation results under three label groupings: 1) All-Labels, 
where all of the labels are kept separate, 2) Tutor-Labels, (the five labels that will be 
used by the system), where Expressed, Inferred and Assumed are combined into a sin-
gle Understood category (i.e., the student understands the facet) and Contra-Expr and 
Contra-Infr are combined to form Contradicted, but the other labels are left as is, and 
3) Yes-No, which is a two way division, Understood versus all other labels.  We 
evaluated interannotator agreement on all double annotated data in the sixteen science 
modules, totaling 142,451 facet annotations.  Agreement on the Tutor-Labels is 
86.2%, with a Kappa statistic of 0.728 corresponding with substantial agreement 
(Cohen 1960).  Agreement is 78.4% on All-Labels and 88.0% on the binary Yes-No 
decision.  These also have Kappa statistics in the range of substantial agreement. 

The distribution of labels is shown in Table 3.  An analysis of the interannotator 
confusion matrix indicates that the most probable disagreement is between Inferred 
and Unaddressed, comprising 39% of the disagreements.  The next most likely dis-
agreements are between Expressed and the other Understood labels (Inferred and As-
sumed), representing 35% of the disagreements.  Confusion between Expressed and 
Unaddressed is also considerable, representing 10% of the annotator disagreements. 
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Table 3. Distribution of annotation labels (145,911 facet annotations) 

Label Count % of Total Count % of Total 
Assumed 37,076 25.4 
Expressed 31,555 21.6 
Inferred 20,474 14.0 

89,105 61.1 

Contra-Expr 1,426 1.0 
Contra-Infr 1,056 0.7 

2,482 1.7 

Self-Contra 86 0.1  0.1 
Diff-Arg 1,780 1.2  1.2 
Unaddressed 52,458 36.0  36.0 

4 Robust Entailment Recognition in Intelligent Tutoring 

In this section, we describe our initial system for entailing or assessing a student’s un-
derstanding of individual reference answer facets; we present results, an error analysis 
and related plans for future work; and we discuss an adaptation to the RTE challenge 
task and its results.  A high level description of the overall procedure is as follows.  
We start with hand generated reference answer facets, similar to typed dependency 
triples (see section 3.3.1).  We generate automatic parses for the reference answers 
and the student answers and automatically modify these parses per our desired repre-
sentation summarized in section 3.1 (also see section 3.3.1 for further details).  Then 
for each manually generated reference answer facet, we extract features indicative of 
the student’s understanding of that facet.  Finally, we train a machine learning classi-
fier on the training data and use it to classify the unseen examples in the test set, as-
signing one of the five Tutor-Labels separately for each reference answer facet to in-
dicate the student’s understanding of that facet.   

4.1 Preprocessing and Representation 

Many of the machine learning features utilized here are based on document cooccur-
rence counts.  Rather than use the web as our corpus (as did Turney (2001) and 
Glickman et al. (2005), who generate analogous similarity statistics), we use three 
publicly available corpora (English Gigaword, The Reuters corpus, and Tipster) total-
ing 7.4M articles and 2.6B indexed terms.  These corpora were utilized because they 
were readily available and already indexed.  However, they are all drawn predomi-
nantly from the news domain, making them less than ideal for assessing students’ an-
swers to science questions.  This will be addressed in the future by indexing more 
relevant information drawn from the web.  These corpora were indexed and searched 
with Lucene, utilizing their PorterStemFilter to replace the surface form of words with 
their lexical stem (the index excluded only three words, {a, an, the}).   

Before extracting features, we generate dependency parses of the reference answers 
and student answers using MaltParser (Nivre et al. 2007).  These parses are automati-
cally modified per our desired representation by reattaching auxiliary verbs and their 
modifiers to the associated main verbs and incorporating prepositions, copulas, terms 
of negation and similar terms into the dependency relation labels (see Section 3.3.1 
and Figure 2; however, we have not trained or utilized a thematic role labeler yet).  As 
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described in Section 3.3.1, these modifications increase the likelihood that terms car-
rying significant semantic content are joined by dependencies that will be the focus of 
feature extraction.   

4.2 Machine Learning Features 

We investigated a variety of linguistic features and settled on the features summarized 
in Table 4, informed by training set cross validation results.  Many of the features 
dropped provided significant value over the simple lexical baseline, but did not im-
prove on the more informative features described here.  The features assess lexical 
similarity via lexical entailment probabilities following (Glickman et al. 2005) and 
lexical stem matches.  They include syntactic information such as part of speech, rele-
vant dependency or facet relation types and dependency path edit distances.  Other 
features include polarity among other things (see Table 4 for details). 

Table 4. Machine learning feature descriptions 

LEXICAL FEATURES 
GOV/MOD_MLE: The lexical entailment probabilities for the reference answer facet governor 
(Gov) and modifier (Mod) following (Glickman et al. 2005) 
GOV/MOD_MATCH: True if the Gov (Mod) stem has an exact match in the learner answer 
SUBORDINATE_MLES: The lexical entailment probabilities for the primary constituent facets’ 
governors and modifiers when the reference facet represents a relation between higher level 
propositions. 
SYNTACTIC FEATURES 
GOV/MOD_POS: The part of speech tags for the reference facet’s governor and modifier 
FACET/ALIGNEDDEP_RELTN: The type labels of the reference facet and aligned learner answer 
dependency (dependency alignments are based on cooccurrence MLEs as with words, i.e., they 
estimate the likelihood of seeing the reference answer dependency in a document given it con-
tains the learner answer dependency (Nielsen et al. 2006)) 
DEP_PATH_EDIT_DIST: The edit distance between the dependency path connecting the refer-
ence facet’s Gov and Mod (not necessarily a single step due to parser errors) and the path con-
necting the aligned terms in the learner answer. Paths include the dependency relations gener-
ated in our modified parse with their attached prepositions, negations, etc, the direction of each 
dependency, and the POS tags of the terms on the path. The calculation applies heuristics to 
judge the similarity of each part of the path (e.g., dropping a subject has a much higher cost 
than dropping an adjective). Alignment for this feature is based on which set of terms in an N-
best list (N=5 in the present experiments) for the Gov and Mod result in the smallest edit dis-
tance.  The N-best list is generated based on the lexical entailment probabilities above. 
OTHER FEATURES 
CONSISTENT_NEGATION: True if the aligned learner dependency path has the same number of 
negations as the reference answer facet. 
RA_CW_CNT: The number of content words in the reference answer, motivated by the fact that 
longer answers are more likely to result in spurious alignments. 

4.3 Classification Approach 

The feature data was split into a training set and three test sets.  The first test set, Un-
seen Modules, consists of all the data from three of the sixteen science modules (Envi-
ronment, Human Body and Water), providing what is loosely a domain independent 
test set of topics not seen in the training data.  The second test set, Unseen Questions, 
consists of all the student answers associated with twenty two randomly selected ques-
tions from the 233 questions in the remaining thirteen modules, providing a question 
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independent test set from the same topics seen in the training data.  The third test set, 
Unseen Answers, was created by withholding four random learner answers from each 
of the remaining questions, with the remainder comprising the training set.  

Today’s ITSs know in advance the questions, reference answers, and what informa-
tion a student should be assumed to understand a priori (e.g., based on the question 
context).  This is equivalent to the Unseen Answers test set; so, in that scenario, it 
makes less sense to include the facets that are labeled Assumed in the test set.  The 
long term goal is for our ITS to generate its own questions, in which case it would be 
useful to classify facets that should be assumed understood a priori.  However, this re-
quires special logic and feature sets that we have not yet implemented, so all Assumed 
facets were withheld from the data sets.  This selection resulted in a total of 54,967 
training examples, 30,514 examples in the Unseen Modules test set, 6,699 in the Un-
seen Questions test set and 3,159 examples in the Unseen Answers test set. 

We evaluated several machine learning algorithms and C4.5 (Quinlan 1993) 
achieved the best results in cross validation on the training data.  Therefore, we used it 
to obtain results for this new task of automatically annotating fine grained reference 
answer facets with detailed entailment classifications. 

4.4 Results  

Table 5 shows the classifier’s accuracy in 10-fold cross validation on the training set 
as well as on each of our test sets.  The columns first show two simpler baselines, the 
accuracy of a classifier that always chooses the most frequent label in the training set 
(Unaddressed), and the accuracy based on a lexical decision that chooses Understood 
if both the reference answer facet’s governing term and its modifier are present in the 
learner’s answer and outputs Unaddressed otherwise, (we also tried thresholding the 
product of their lexical entailment probabilities following Glickman et al. (2005), who 
achieved the best results in the first RTE challenge, but this gave virtually the same 
results as the word matching baseline for this dataset).  The column labeled Table 4 
Features presents the results of our classifier and Reduced Training is described in the 
Discussion section which follows. These results are for predicting the five possible 
Tutor Labels that will drive the dialogue provided by the tutor: Understood, Contra-
dicted, Self-Contra, Diff-Arg, and Unaddressed.   

Table 5. Tutor-Labels classifier accuracy on non-Assumed reference answer facets 

 Majority 
Label 

Lexical 
Baseline 

Table 4 
Features 

Reduced 
Training 

Training Set 10x CV 54.6 59.7 77.1  
Unseen Answers 51.1 56.1 75.5  
Unseen Questions 58.4 63.4 61.7 66.5 
Unseen Modules 53.4 62.9 61.4 68.8 

4.5 Discussion 

This is a novel paradigm and a new dataset, and these results are very promising.  The 
accuracy on the Tutor-Labels is 24.4%, 3.3%, and 8.0% over the most frequent class 
baseline for Unseen Answers, Questions, and Modules respectively.  Accuracy on Un-
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seen Answers is 19.4% better than the lexical baseline.  However, this simpler base-
line outperformed our classifier on the other two test sets.  Results on the Yes-No La-
bels (not shown), predicting that the tutor should provide some form of remediation, 
follow a similar trend.  

It seemed probable that the decision tree may have over fit the data due to bias in 
the data itself; specifically, since many of the students’ answers are very similar when 
considering just the text that is relevant to a given reference answer facet, there are 
likely to be large clusters of nearly identical feature-class pairings, which could result 
in classifier decisions that do not generalize as well to other questions or domains.  
This bias is not problematic when the test data is very similar to the training data, as is 
the case for our Unseen Answers test set, but would negatively affect performance on 
less similar data, such as our Unseen Questions and Modules.  To test this hypothesis, 
we reduced the number of examples in our training set to about 8,000, which would 
result in fewer of these dense clusters, and retrained the classifier.  The result for Un-
seen Questions, shown in the Reduced Training column, was an improvement of 
4.8%.  Given this promising improvement, we attempted to find the optimal training 
set size through cross-validation on the training data.  Specifically, we iterated over 
the training science modules holding one module out, training on the other 12 and 
testing on the held out module.  We analyzed the learning curve varying the number 
of randomly selected examples per facet and found the optimal accuracy for training 
set cross-validation by averaging the results over all the modules.  We then trained a 
classifier on that number of random examples per facet in the training set and tested 
on the Unseen Modules test set.  The result was an increase in accuracy of 7.4% over 
training on the full training set.  In future work, we will investigate other more princi-
pled techniques to avoid this type of over-fitting, which we believe is somewhat 
atypical, and analyze its cause in more detail. 

Results on the Unseen Modules test set are suggestive of performance that might be 
achievable in other domains, such as general reading comprehension.  In this case, the 
system was trained on data from areas such as Physics of Sound and Electricity and 
Magnetism, and then tested on very different topics such as the Human Body and Wa-
ter.  While this work includes extensive hand annotation, no training data needed to 
be annotated in these test domains and the system was not modified in any way to 
handle the new domains (annotation of the three associated modules was strictly for 
testing).  Furthermore, feature vectors were extracted from term and dependency simi-
larities found in news wire corpora, rather than domain specific science corpora.  This 
work is not completely domain independent, since the reference answer facets were 
extracted by hand.  However, this process was based closely on techniques that have 
been proven to be learnable by systems (dependency parsing and shallow semantic 
parsing).  Indeed many of our features are derived from the automatic generation of a 
representation very similar to that of the reference answer facets.  Still, it is possible 
that, if the style of questions and reference answers varies from that of our corpus, it 
could result in a drop in the domain independent performance.  Future work includes 
the automatic generation of the reference answer facets, at which point no hand anno-
tation would be required to handle new questions or domains.  The adaptation of this 
system to the RTE challenge task (see section 4.7) represents a significant step in this 
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direction and provides evidence that the system should perform approximately as well 
when the tutored subject is very different. 

It is worth emphasizing that the annotation (system and human) is strictly relative 
to the reference answer facets (i.e., for each student answer, each facet of the refer-
ence answer is annotated to indicate the perceived student understanding of it).  Stu-
dent answer facets are not annotated separately to indicate their relevance and, thus, 
the system is not being unduly credited for identifying irrelevant student verbiage.  
Future work includes the detection of misconceptions that are independent of the ref-
erence facets; however, it is rare for students to express misconceptions that do not re-
sult in at least one reference answer facet being labeled Contradicted or Diff-Arg. 

4.6 Error Analysis 

In order to focus future work on the areas most likely to benefit the system, an error 
analysis was performed based on the results of 13-fold cross-validation on the training 
data.  For each module, we trained on twelve science modules and tested on the data 
in the remaining, held-out module, effectively simulating the Unseen Modules test 
condition.  We only considered the subsets of errors that were most likely to lead to 
short-term system improvements.  This included only Expressed and Unaddressed 
facets where the annotators agreed unanimously.  Contradictions were excluded since 
there was almost no attempt to handle these in the present system.  This must be ad-
dressed in future work, since despite their somewhat infrequent occurrence, it is criti-
cal that the tutor recognize and address these contradictory beliefs as early as possible.  
We discuss Expressed facets in the next section of the paper and Unaddressed in the 
following section. 

4.6.1 Errors in Expressed Facets 

Without examining each example relative to the decision tree that classified it, it is not 
possible to know exactly what caused the errors.  The analysis here simply indicates 
what factors are involved in inferring whether the reference answer facets were 
understood and what relationships exist between the student answer and the reference 
answer facet.  We analyzed 100 random examples of errors where annotators 
considered the facet Expressed and the system labeled it Unaddressed.  We group the 
potential error factors seen in the data, listed in order of frequency, according to issues 
associated with paraphrases, logical inference, pragmatics, and preprocessing errors.   

Paraphrase issues, broadly construed, are subdivided into four main categories: 
coreference resolution, lexical substitution, syntactic alternation and phrase-based 
paraphrases. Our results in this area are in line with (Bar-Haim, Szpektor and Glick-
man 2005), who considered which inference factors are involved in proving textual 
entailment in the RTE challenge.  Three coreference resolution factors combined are 
involved in nearly 30% of the errors.  Students use on average 1.1 pronouns per 
answer, generally referring to key entities.  Fifteen of the errors involved a pronoun, 
including eleven uses of it.  In twelve errors, the student utilized a coreferring 
common noun or adjective from the question or reference answer.   

As a group, the simple lexical substitution categories (synonymy, hypernymy, 
hyponymy, meronymy, derivational changes, and other lexical paraphrases) appear 
more often in errors than any of the other factors with around thirtyfive occurrences.  
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Roughly half of these relationships should be detectable using broad coverage lexical 
resources.  However, many of these lexical paraphrases are not necessarily associated 
in lexical resources such as WordNet or VerbNet (e.g., neither resource includes a 
connection between have and contain).  Concept definitions account for an additional 
fourteen issues that might be addressed by lexical resources. 

Vanderwende, Coughlin and Dolan (2005) found that 34% of the Recognizing 
Textual Entailment Challenge test data could be handled by recognizing simple 
syntactic variations.  However, while syntactic variation is certainly common in the 
kids’ data, it did not appear to be the primary factor in any of the system errors.  Most 
of the remaining paraphrase errors were classified as involving phrase-based 
paraphrases (e.g., in the middle versus halfway between).  Six related errors essentially 
involved negation of an antonym, (e.g., no one has the same fingerprint versus 
everyone has a different print).  Paraphrase recognition is an area that we intend to 
invest significant time in future research.   

The next most common issues after paraphrases were deep or logical reasoning 
(e.g., recognizing that two sounds must be very different in the case that …it is easy to 
discriminate [between them]…) and then pragmatics (e.g., recognizing that saying 
Because the vibrations implies that a rubber band is vibrating given the question 
context).  These two factors were involved in nearly 40% of the errors.  Finally, the 
remaining errors were largely the result of preprocessing issues (e.g., data 
normalization: 3 versus three).  

While we believe improving the parser output will result in higher accuracy by the 
entailment classifier, there was little evidence to support this in the parses examined in 
this error analysis.  We only checked parses when the dependency path features 
looked wrong and it was somewhat surprising that the classifier made an error and 
only two of these classification errors were associated with parser errors. However, 
better parses should lead to more reliable (less noisy) features, which in turn will 
allow the machine learning algorithm to more easily recognize which features are the 
most predictive. 

It should be emphasized that over half of the errors in Expressed facets involved 
more than one of the fine-grained factors discussed here. For example, to recognize 
the child understands a tree is blocking the sunlight based on the answer There is a 
shadow there because the sun is behind it and light cannot go through solid objects..., 
requires resolving the solid object mentioned to the tree, and then recognizing that 
light cannot go through [the tree] entails the tree blocks the light. 

4.6.2 Errors in Unaddressed Facets 

Unlike the errors in Expressed facets, a number of the examples here appeared to be 
questionable annotations. For example, given the student answer Because the darker 
the color the faster it will heat up, the annotators did not infer that the student believed 
the sheeting chosen was the darkest color. 

One of the biggest sources of errors in Unaddressed facets is the result of ignoring 
the context of words. For example, the student answer You could wrap the insulated 
wire to the iron nail and attach the battery and switch leads to the classification of 
Understood for a facet indicating to touch the nail to a permanent magnet to turn it 
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into a temporary magnet, but wrapping the wire to the nail should have been aligned 
to a different method of making a temporary magnet. 

Many of the errors in Unaddressed facets appear to be the result of antonyms 
having very similar statistical co-occurrence patterns (e.g., absorbs energy versus 
reflects energy).  However, this also may be an annotation error that should have been 
labeled Contra-Expr rather than Unaddressed. 

The biggest source of error is simply classifying a number of facets as Understood 
if there is partial lexical similarity and perhaps syntactic similarity as in the case of 
accepting the balls are different in place of different girls. However, there are also a 
few cases where it is unclear why the decision was made, as in an example where the 
system apparently trusted that the student understood a complicated electrical circuit 
based on the student answer we learned it in class. 

The processes and the more informative features implied in the preceding section 
describing errors in Expressed facets should allow the learning algorithm to focus on 
less noisy features and avoid many of the errors described in this section. However, 
additional features will need to be added to ensure appropriate lexical and phrasal 
alignment, which should also provide a significant benefit here. Future plans include 
training an alignment classifier separate from the assessment classifier. 

4.7 Application to RTE outside of Intelligent Tutoring Systems 

We believe this work is applicable to recognizing textual entailment in general, be-
yond just the ITS domain.  For example in question answering, answer facets that are 
entailed by multiple passages in a text can be asserted with more confidence or an-
swers could be built up from separately entailed facets.  In the remainder of this sec-
tion, we describe one possible adaptation of our system to the RTE challenge to situ-
ate it within the broader RTE field.   

For a number of reasons it is not straightforward to apply our system to the RTE 
challenge datasets nor to compare its performance with systems in the challenges.  
First, we are classifying reference answer facet entailment, not entailment of an over-
all passage (called the hypothesis, h, in the RTE challenge).  An implementation that 
simply classifies h as entailed if each of its facets are entailed and not entailed other-
wise, would perform poorly.  Second, we currently start with manually generated ref-
erence answer facets and do not have such facets for h; furthermore, creating them 
would not lead to a fair comparison with other systems.  To work around this issue, 
we instead automatically generated facets as described in section 4.1.  The key differ-
ence, beyond the fact that the ASK reference answer facets are gold standard, is that 
the automatically generated h facets use dependency type labels rather than thematic 
role labels.  

We trained a binary facet-based classifier on the ASK corpus, withholding Inferred, 
Self-Contradicted and Assumed facets, as these were largely beyond the scope of the 
RTE challenge datasets or our current system implementation.  The binary decision 
classified facets as Entailed (Expressed) versus Not Entailed (Contradicted, Unad-
dressed or Diff-Arg).  We then classified each system-generated facet of the RTE 
datasets and produced associated facet entailment probability estimates.  Our feature 
set for this facet classifier was as described in Table 4 with two exceptions.  First, we 
excluded the FACET_RELTN and ALIGNED_DEP_RELTN, since the RTE data was labeled 
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with dependency types rather than thematic role labels.  Second, we excluded 
SUBORDINATE_MLES, since these features were used only for the facets connecting 
higher-level propositions and we wanted a consistent feature set when combining re-
sults across all facets.  The accuracy of this binary classifier on our Unseen Questions 
and Unseen Modules datasets was 80.8% and 79.2%, respectively. 

We estimated accuracy on the RTE facets by assuming that all facets in entailed 
RTE pairs were entailed and labeling a random sample of 200 facets from the non-
entailed pairs (100 classified entailed and 100 classified not-entailed).  The accuracy 
on facets from entailed pairs was 79.8% and the estimated accuracy on facets from 
non-entailed pairs was 77.9%, resulting in an overall estimated RTE facet accuracy of 
78.9%.  This is only 0.3% below the accuracy on the ASK Unseen Modules dataset, 
further supporting the belief that the system should transfer to other ITS domains with 
relatively little degradation in performance and without the need for additional hand 
annotation or domain specific development.  It is worth emphasizing that there was 
absolutely no manual generation of RTE facets, nor was there any RTE facet labeling 
for the purposes of training; the system was trained strictly on the children’s data in 
the ASK corpus.  

Next, we generated feature vectors for each RTE example by combining the fea-
tures and entailment probability estimates over each of the facet-based classifications.  
Specifically, the features for the final classifier were the average, geometric mean, and 
lowest values over all facets for the ASK-trained classifier’s facet entailment prob-
abilities, the facet-based GOV/MOD_MLE features, and the DEP_PATH_EDIT_DIST fea-
tures; the proportion of exact stem matches (from GOV/MOD_MATCH); the RA_CW_CNT 
feature; and for the single hypothesis facet with the lowest entailment probability, the 
POS tags of its governor and modifier and their aligned terms from the text.  We then 
trained a support vector machine on the RTE feature vectors from RTE3 development 
and RTE1 and RTE2 data and used it to classify the RTE3 test data.  The results are 
discussed in the following section. 

4.8 Results on RTE Challenge Data 

Table 6 shows the accuracy on the RTE3 test data along with accuracy in 10-fold 
cross validation on the training data.  The first column provides the majority class 
(Entailed) baseline.  The second column presents results considered to be a reasonable 
string comparison baseline (c.f., Giampiccolo, Magnini, Dagan and Dolan 2007), 
which were also the median results across all RTE3 challenge submissions.  The third 
column shows the accuracy when training strictly on the facet entailment probability 
estimates output by the ASK corpus trained classifier.  The final column presents ac-
curacy using all of the features described in the previous section.  Examining per class 
performance reveals that the classifier is much more accurate on entailed pairs 
(84.1%) than non-entailed pairs (49.2%).  These results would have been fourth of 
twenty-three in the RTE3 challenge, but as with all others, fall significantly short of 
the best results (80%) achieved by Hickl and Bensley (2007).   



Recognizing Entailment in Intelligent Tutoring Systems      19 

Table 6. Classifier accuracy on RTE3 test set 

 Majority 
Label 

String Matching 
Baseline 

Facet Probability 
Estimates Only 

All Features 

Training Set 10x CV 50.3 n/a 58.4 62.6 
RTE3 Test Set 51.3 61 63.8 67.1 

One of the primary goals of our paradigm within the ITS domain is to facilitate a 
dialogue focused on the specific facet of the reference answer where the student’s re-
sponse could be improved.  Along those lines, perhaps the more useful application to 
the RTE data would be to identify why and in what area a hypothesis is not entailed.  
While this is largely left as future work, the RTE facet accuracy presented in the pre-
vious section suggests the approach should be reasonably successful.   

5 Conclusion 

The results on the children’s corpus presented here are 19.4% over a lexical baseline 
derived from the best performing system at the first RTE challenge.  This demon-
strates that the task is feasible and we believe with more rigorous feature engineering, 
accuracy should be in a range that allows effective tutoring.  We are currently in the 
process of implementing our ITS and a chief area of future research is incorporating 
this system and assessing its effectiveness with spoken dialog input.  In prior work 
(Nielsen, Ward and Martin 2007), we achieved confidence weighted scores approxi-
mately 10% (absolute) over the classification accuracy, indicating that the class prob-
ability estimates will be useful to the dialog manager in deciding how strongly to be-
lieve in the classifier’s output.  If the classification suggests the learner understood a 
concept, but the confidence is low, the dialog manager could paraphrase the answer as 
a transition to the next question, rather than assuming the learner definitely under-
stands and simply moving on and rather than asking a confirming question about 
something the learner probably already expressed.  Thus, even if there is a moderate 
error rate in classifying the facets, confidence estimates can still facilitate effective 
dialogue. 

Three of the most significant contributions of this work are defining and evaluating 
a new paradigm for learner answer assessment that involves classification of fine 
grained answer facets with the detailed labels necessary to enable more intelligent dia-
log control, creating an annotated corpus that supports this paradigm, and laying the 
framework for an answer assessment system that can classify learner responses to 
previously unseen questions according to this scheme.  This is also the first work to 
demonstrate success in assessing short constructed responses from elementary school 
children. 

The validity of the entailment paradigm, semantic representation, and corpus anno-
tation described here is strengthened by substantial interannotator agreement (86.2%, 
Kappa = 0.728) and by promising automated classification results.  The corpus is 
available for researchers to utilize in improving other entailment systems, as well as 
tutoring and educational assessment technologies.  This database of annotated answers 
provides a shared resource and a standardized annotation scheme that we hope will 
stimulate further research in these areas.   
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All prior work on intelligent tutoring systems has focused on question specific as-
sessment of answers and even then the understanding of learner responses has gener-
ally been restricted to a judgment regarding their correctness or in a small number of 
cases a classification that specifies which of a predefined set of misconceptions the 
learner might be exhibiting.  The domain independent approach described here en-
ables systems that can easily scale up to new content and learning environments, 
avoiding the need for lesson planners or technologists to create extensive new rules or 
classifiers for each new question the system must handle.  This is an obligatory first 
step in creating intelligent tutoring systems that can truly engage children in natural 
unrestricted dialog, such as is required to perform high quality student directed So-
cratic tutoring.   
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