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Abstract

We propose a novel algorithm for inducing seman-
tic taxonomies. Previous algorithms for taxonomy
induction have typically focused on independent
classifiers for discovering new single relationships
based on hand-constructed or automatically discov-
ered textual patterns. By contrast, our algorithm
flexibly incorporates evidence from multiple clas-
sifiers over heterogenous relationships to optimize
the entire structure of the taxonomy, using knowl-
edge of a word’s coordinate terms to help in deter-
mining its hypernyms, and vice versa. We apply our
algorithm on the problem of sense-disambiguated
noun hyponym acquisition, where we combine the
predictions of hypernym and coordinate term clas-
sifiers with the knowledge in a preexisting seman-
tic taxonomy (WordNet 2.1). We add10, 000 novel
synsets to WordNet 2.1 at84% precision, a rela-
tive error reduction of70% over a non-joint algo-
rithm using the same component classifiers. Fi-
nally, we show that a taxonomy built using our al-
gorithm shows a 23% relative F-score improvement
over WordNet 2.1 on an independent testset of hy-
pernym pairs.

1 Introduction

The goal of capturing structured relational knowl-
edge about lexical terms has been the motivating
force underlying many projects in lexical acquisi-
tion, information extraction, and the construction
of semantic taxonomies. Broad-coverage seman-
tic taxonomies such as WordNet (Fellbaum, 1998)
and CYC (Lenat, 1995) have been constructed by
hand at great cost; while a crucial source of knowl-
edge about the relations between words, these tax-
onomies still suffer from sparse coverage.

Many algorithms with the potential for auto-
matically extending lexical resources have been
proposed, including work in lexical acquisition
(Riloff and Shepherd, 1997; Roark and Charniak,
1998) and in discovering instances, named enti-
ties, and alternate glosses (Etzioni et al., 2005;
Pasça, 2005). Additionally, a wide variety of
relationship-specific classifiers have been pro-
posed, including pattern-based classifiers for hy-
ponyms (Hearst, 1992), meronyms (Girju, 2003),

synonyms (Lin et al., 2003), a variety of verb re-
lations (Chklovski and Pantel, 2004), and general
purpose analogy relations (Turney et al., 2003).
Such classifiers use hand-written or automatically-
induced patterns likeSuchNPy asNPx or NPy

like NPx to determine, for example thatNPy is a
hyponym ofNPx (i.e., NPy IS-A NPx). While
such classifiers have achieved some degree of suc-
cess, they frequently lack the global knowledge
necessary to integrate their predictions into a com-
plex taxonomy with multiple relations.

Past work on semantic taxonomy induction in-
cludes the noun hypernym hierarchy created in
(Caraballo, 2001), the part-whole taxonomies in
(Girju, 2003), and a great deal of recent work de-
scribed in (Buitelaar et al., 2005). Such work has
typically either focused on only inferring small
taxonomies over a single relation, or as in (Cara-
ballo, 2001), has used evidence for multiple rela-
tions independently from one another, by for ex-
ample first focusing strictly on inferring clusters
of coordinate terms, and then by inferring hyper-
nyms over those clusters.

Another major shortfall in previous techniques
for taxonomy induction has been the inability to
handle lexical ambiguity. Previous approaches
have typically sidestepped the issue of polysemy
altogether by making the assumption of only a sin-
gle sense per word, and inferring taxonomies ex-
plicitly over words and not senses. Enforcing a
false monosemy has the downside of making po-
tentially erroneous inferences; for example, col-
lapsing the polysemous termBush into a single
sense might lead one to infer by transitivity that
a rose bushis a kind ofU.S. president.

Our approach simultaneously provides a solu-
tion to the problems of jointly considering evi-
dence about multiple relationships as well as lexi-
cal ambiguity within a single probabilistic frame-
work. The key contribution of this work is to offer
a solution to two crucial problems in taxonomy in-
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duction and hyponym acquisition: the problem of
combining heterogenous sources of evidence in a
flexible way, and the problem of correctly identi-
fying the appropriate word sense of each new word
added to the taxonomy.1

2 A Probabilistic Framework for
Taxonomy Induction

In section 2.1 we introduce our definitions for tax-
onomies, relations, and thetaxonomic constraints
that enforce dependencies between relations; in
section 2.2 we give a probabilistic model for defin-
ing the conditional probability of a set of relational
evidence given a taxonomy; in section 2.3 we for-
mulate a local search algorithm to find the taxon-
omy maximizing this conditional probability; and
in section 2.4 we extend our framework to deal
with lexical ambiguity.

2.1 Taxonomies, Relations, and Taxonomic
Constraints

We define a taxonomyT as a set of pairwise re-
lationsR over some domain of objectsDT. For
example, the relations in WordNet includehyper-
nymy, holonymy, verb entailment, and many oth-
ers; the objects of WordNet between which these
relations hold are its word senses orsynsets. We
define that each relationR ∈ R is a set of ordered
or unordered pairs of objects(i, j) ∈ DT; we de-
fine Rij ∈ T if relationshipR holds over objects
(i, j) in T.

Relations for Hyponym Acquisition

For the case of hyponym acquisition, the ob-
jects in our taxonomy are WordNetsynsets. In
this paper we focus on two of the many possible
relationships between senses: the hypernym rela-
tion and the coordinate term relation. We treat the
hypernym or ISA relation as atomic; we use the
notationHn

ij if a sensej is then-th ancestor of a
sensei in the hypernym hierarchy. We will sim-
ply useHij to indicate thatj is an ancestor ofi
at some unspecified level. Two senses are typi-
cally considered to be “coordinate terms” or “tax-
onomic sisters” if they share an immediate parent
in the hypernym hierarchy. We generalize this no-
tion of siblinghood to state that two sensesi and
j are(m,n)-cousinsif their closestleast common

1The taxonomies discussed in this paper are available for
download athttp://ai.stanford.edu/ ∼rion/swn .

subsumer(LCS)2 is within exactlym andn links,
respectively.3 We use the notationCmn

ij to denote
that i andj are(m,n)-cousins. Thus coordinate
terms are(1, 1)-cousins; technically the hypernym
relation may also be seen as a specific case of this
representation; an immediate parent in the hyper-
nym hierarchy is a(1, 0)-cousin, and thek-th an-
cestor is a(k, 0)-cousin.

Taxonomic Constraints

A semantic taxonomy such as WordNet en-
forces certaintaxonomic constraintswhich disal-
low particular taxonomiesT. For example, the
ISA transitivity constraint in WordNet requires
that each synset inherits the hypernyms of its hy-
pernym, and the part-inheritance constraint re-
quires that each synset inherits the meronyms of
its hypernyms.

For the case of hyponym acquisition we enforce
the following two taxonomic constraints on the
hypernym and (m,n)-cousin relations:

1. ISA Transitivity:

Hm
ij ∧Hn

jk ⇒ Hm+n
ik .

2. Definition of (m,n)-cousinhood:

Cmn
ij ⇔ ∃k.k = LCS(i, j) ∧Hm

ik ∧Hn
jk.

Constraint (1) requires that the each synset inherits
the hypernyms of its direct hypernym; constraint
(2) simply defines the (m,n)-cousin relation in
terms of the atomic hypernym relation.

The addition of any new hypernym relation to a
preexisting taxonomy will usually necessitate the
addition of a set of other novel relations as implied
by the taxonomic constraints. We refer to the full
set of novel relations implied by a new linkRij as
I(Rij); we discuss the efficient computation of the
set of implied links for the purpose of hyponym
acquisition in Section 3.4.

2.2 A Probabilistic Formulation

We propose that the eventRij ∈ T has some
prior probability P (Rij ∈ T), and P (Rij ∈

2A least common subsumerLCS(i, j) is defined as a
synset that is an ancestor in the hypernym hierarchy of both
i andj which has no child that is also an ancestor of bothi
andj. When there is more than oneLCS (due to multiple
inheritance), we refer to theclosestLCS, i.e.,theLCS that
minimizes the maximum distance toi andj.

3An (m, n)-cousin form ≥ 2 corresponds to the English
kinship relation “(m−1)-th cousin|m−n|-times removed.”
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T) + P (Rij 6∈ T) = 1. We define the probability
of the taxonomy as a whole as the joint probability
of its component relations; given a partition of all
possible relationsR = {A,B} whereA ∈ T and
B 6∈ T, we define:

P (T) = P (A ∈ T, B 6∈ T).

We assume that we have some set of observed evi-
denceE consisting of observed features over pairs
of objects in some domainDE; we’ll begin with
the assumption that our features are over pairs of
words, and that the objects in the taxonomy also
correspond directly to words.4 Given a set of fea-
turesER

ij ∈ E, we assume we have some model
for inferring P (Rij ∈ T|ER

ij), i.e., the posterior
probability of the eventRij ∈ T given the corre-
sponding evidenceER

ij for that relation. For exam-
ple, evidence for the hypernym relationEH

ij might
be the set of all observed lexico-syntactic patterns
containingi andj in all sentences in some corpus.

For simplicity we make the following indepen-
dence assumptions: first, we assume that each
item of observed evidenceER

ij is independent of
all other observed evidence given the taxonomyT,
i.e.,P (E|T) =

∏
ER

ij∈E P (ER
ij |T).

Further, we assume that each item of observed
evidenceER

ij depends on the taxonomyT only by
way of the corresponding relationRij , i.e.,

P (ER
ij |T) =

{
P (ER

ij |Rij ∈ T) if Rij ∈ T
P (ER

ij |Rij 6∈ T) if Rij 6∈ T

For example, if our evidenceEH
ij is a set of ob-

served lexico-syntactic patterns indicative of hy-
pernymy between two wordsi andj, we assume
that whatever dependence the relations inT have
on our observations may be explained entirely by
dependence on the existence or non-existence of
the single hypernym relationH(i, j).

Applying these two independence assumptions
we may express the conditional probability of our
evidence given the taxonomy:

P (E|T) =
∏

Rij∈T

P (ER
ij |Rij ∈ T)

·
∏

Rij 6∈T

P (ER
ij |Rij 6∈ T).

Rewriting the conditional probability in terms
of our estimates of the posterior probabilities

4In section 2.4 we drop this assumption, extending our
model to manage lexical ambiguity.

P (Rij |ER
ij) using Bayes Rule, we obtain:

P (E|T) =
∏

Rij∈T

P (Rij ∈ T|ER
ij)P (ER

ij)
P (Rij ∈ T)

·
∏

Rij 6∈T

P (Rij 6∈ T|ER
ij)P (ER

ij)
P (Rij 6∈ T)

.

Within our model we define the goal of taxon-
omy induction to be to find the taxonomŷT that
maximizes the conditional probability of our ob-
servationsE given the relationships ofT, i.e., to
find

T̂ = arg max
T

P (E|T).

2.3 Local Search Over Taxonomies

We propose a search algorithm for findingT̂ for
the case of hyponym acquisition. We assume we
begin with some initial (possibly empty) taxon-
omy T. We restrict our consideration of possible
new taxonomies to those created by the single op-
erationADD-RELATION(Rij ,T), which adds the
single relationRij to T.

We define the multiplicative change∆T(Rij)
to the conditional probabilityP (E|T) given the
addition of a single relationRij :

∆T(Rij) = P (E|T′)/P (E|T)

=
P (Rij ∈ T|ER

ij)P (ER
ij)

P (Rij 6∈ T|ER
ij)P (ER

ij)
· P (Rij 6∈ T)
P (Rij ∈ T)

= k


 P

(
Rij ∈ T|ER

ij

)

1− P
(
Rij ∈ T|ER

ij

)

 .

Herek is the inverse odds of the prior on the event
Rij ∈ T; we consider this to be a constant inde-
pendent ofi, j, and the taxonomyT.

To enforce the taxonomic constraints inT, for
each application of theADD-RELATION operator
we must add all new relations in the implied set
I(Rij) not already inT.5 Thus we define the mul-
tiplicative change of the full set of implied rela-
tions as the product over all new relations:

∆T(I(Rij)) =
∏

R∈I(Rij)

∆T(R).

5For example, in order to add the new synset
microsoft under the noun synset company#n#1
in WordNet 2.1, we must necessarily add the
new relations H2(microsoft, institution#n#1)
C11(microsoft, dotcom#n#1), and so on.
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This definition leads to the following best-first
search algorithm for hyponym acquisition, which
at each iteration defines the new taxonomy as the
union of the previous taxonomyT and the set of
novel relations implied by the relationRij that
maximizes∆T(I(Rij)) and thus maximizes the
conditional probability of the evidence over all
possible single relations:

WHILE max
Rij 6∈T

∆T(I(Rij)) > 1

T ← T ∪ I(arg max
Rij 6∈T

∆T(I(Rij))).

2.4 Extending the Model to Manage Lexical
Ambiguity

Since word senses are not directly observable, if
the objects in the taxonomy are word senses (as in
WordNet), we must extend our model to allow for
a many-to-many mapping (e.g., a word-to-sense
mapping) betweenDE andDT. For this setting
we assume we know the functionsenses(i), map-
ping from the wordi to all of i′s possible corre-
sponding senses.

We assume that each set of word-pair evidence
ER

ij we possess is in fact sense-pair evidenceER
kl

for a specific pair of sensesk0 ∈ senses(i), l0 ∈
senses(j). Further, we assume that a new relation
between two words is probable only between the
correct sense pair, i.e.:

P (Rkl|ER
ij) = 1{k = k0, l = l0} · P (Rij |ER

ij).

When computing the conditional probability of a
specific new relationRkl ∈ I(Rab), we assume
that the relevant sense pairk0, l0 is the one which
maximizes the probability of the new relation, i.e.
for k ∈ senses(i), l ∈ senses(j),

(k0, l0) = argmax
k,l

P (Rkl ∈ T|ER
ij).

Our independence assumptions for this exten-
sion need only to be changed slightly; we now as-
sume that the evidenceER

ij depends on the taxon-
omy T via only a single relation between sense-
pairs Rkl. Using this revised independence as-
sumption the derivation for best-first search over
taxonomies for hyponym acquisition remains un-
changed. One side effect of this revised indepen-
dence assumption is that the addition of the single
“sense-collapsed” relationRkl in the taxonomyT
will explain the evidenceER

ij for the relation over
wordsi andj now that such evidence has been re-
vealed to concern only the specific sensesk andl.

3 Extending WordNet

We demonstrate the ability of our model to use
evidence from multiple relations to extend Word-
Net with novel noun hyponyms. While in prin-
ciple we could use any number of relations, for
simplicity we consider two primary sources of ev-
idence: the probability of two words in WordNet
being in a hypernym relation, and the probability
of two words in WordNet being in a coordinate re-
lation.

In sections 3.1 and 3.2 we describe the construc-
tion of our hypernym and coordinate classifiers,
respectively; in section 3.3 we outline the efficient
algorithm we use to perform local search over
hyponym-extended WordNets; and in section 3.4
we give an example of the implicit structure-based
word sense disambiguation performed within our
framework.

3.1 Hyponym Classification

Our classifier for the hypernym relation is derived
from the “hypernym-only” classifier described in
(Snow et al., 2005). The features used for pre-
dicting the hypernym relationship are obtained by
parsing a large corpus of newswire and encyclo-
pedia text with MINIPAR (Lin, 1998). From the
resulting dependency trees the evidenceEH

ij for
each word pair(i, j) is constructed; the evidence
takes the form of a vector of counts of occurrences
that each labeled syntactic dependency path was
found as the shortest path connectingi and j in
some dependency tree. The labeled training set is
constructed by labeling the collected feature vec-
tors as positive “known hypernym” or negative
“known non-hypernym” examples using WordNet
2.0; 49,922 feature vectors were labeled as pos-
itive training examples, and 800,828 noun pairs
were labeled as negative training examples. The
model for predictingP (Hij |EH

ij ) is then trained
using logistic regression, predicting the noun-pair
hypernymy label from WordNet from the feature
vector of lexico-syntactic patterns.

The hypernym classifier described above pre-
dicts the probability of the generalized hypernym-
ancestor relation overwords P (Hij |EH

ij ). For
the purposes of taxonomy induction, we would
prefer an ancestor-distance specific set of clas-
sifiers oversenses, i.e., for k ∈ senses(i), l ∈
senses(j), the set of classifiers estimating
{P (H1

kl|EH
ij ), P (H2

kl|EH
ij ), . . . }.
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One problem that arises from directly assign-
ing the probabilityP (Hn

ij |EH
ij ) ∝ P (Hij |EH

ij ) for
all n is the possibility of adding a novel hyponym
to an overly-specific hypernym, which might still
satisfy P (Hn

ij |EH
ij ) for a very largen. In or-

der to discourage unnecessary overspecification,
we penalize each probabilityP (Hk

ij |EH
ij ) by a

factor λk−1 for someλ < 1, and renormalize:
P (Hk

ij |EH
ij ) ∝ λk−1P (Hij |EH

ij ). In our experi-
ments we setλ = 0.95.

3.2 (m,n)-cousin Classification

The classifier for learning coordinate terms relies
on the notion ofdistributional similarity, i.e., the
idea that two words with similar meanings will be
used in similar contexts (Hindle, 1990). We ex-
tend this notion to suggest that words with similar
meanings should be near each other in a seman-
tic taxonomy, and in particular will likely share a
hypernym as a near parent.

Our classifier for (m,n)-cousins is derived
from the algorithm and corpus given in (Ravichan-
dran et al., 2005). In that work an efficient ran-
domized algorithm is derived for computing clus-
ters of similar nouns. We use a set of more than
1000 distinct clusters of English nouns collected
by their algorithm over 70 million webpages6,
with each nouni having a score representing its
cosine similarity to the centroidc of the cluster to
which it belongs,cos(θ(i, c)).

We use the cluster scores of noun pairs as input
to our own algorithm for predicting the(m,n)-
cousin relationship between the senses of two
words i and j. If two words i and j appear in
a cluster together, with cluster centroidc, we set
our single coordinate input feature to be the mini-
mum cluster scoremin(cos(θ(i, c)), cos(θ(j, c))),
and zero otherwise. For each such noun pair fea-
ture, we construct a labeled training set of (m,n)-
cousin relation labels from WordNet 2.1. We de-
fine a noun pair (i, j) to be a “known (m,n)-
cousin” if for some sensesk ∈ senses(i), l ∈
senses(j), Cmn

ij ∈ WordNet; if more than one
such relation exists, we assume the relation with
smallest summ + n, breaking ties by smallest
absolute difference|m − n|. We consider all
such labeled relationships from WordNet with0 ≤
m,n ≤ 7; pairs of words that have no correspond-
ing pair of synsets connected in the hypernym hi-

6As a preprocessing step we hand-edit the clusters to re-
move those containing non-English words, terms related to
adult content, and other webpage-specific clusters.

erarchy, or withmin(m,n) > 7, are assigned to
a single classC∞. Further, due to the symme-
try of the similarity score, we merge each class
Cmn = Cmn ∪ Cnm; this implies that the result-
ing classifier will predict, as expected given a sym-
metric input,P (Cmn

kl |EC
ij ) = P (Cnm

kl |EC
ij ).

We find 333,473 noun synset pairs in our train-
ing set with similarity score greater than 0.15. We
next apply softmax regression to learn a classifier
that predictsP (Cmn

ij |EC
ij ), predicting the Word-

Net class labels from the single similarity score
derived from the noun pair’s cluster similarity.

3.3 Details of our Implementation

Hyponym acquisition is among the simplest and
most straightforward of the possible applications
of our model; here we show how we efficiently
implement our algorithm for this problem. First,
we identify the set of all the word pairs(i, j) over
which we have hypernym and/or coordinate ev-
idence, and which might represent additions of
a novel hyponym to the WordNet 2.1 taxonomy
(i.e., that has a known noun hypernym and an un-
known hyponym, or has a known noun coordi-
nate term and an unknown coordinate term). This
yields a list of 95,000 single links over threshold
P (Rij) > 0.12.

For each unknown hyponymi we may have
several pieces of evidence; for example, for the
unknown termcontinentalwe have 21 relevant
pieces of hypernym evidence, with links to possi-
ble hypernyms{carrier, airline, unit, . . .}; and we
have 5 pieces of coordinate evidence, with links to
possible coordinate terms{airline, american ea-
gle, airbus, . . .}.

For each proposed hypernym or coordinate link
involved with the novel hyponymi, we compute
the set of candidate hypernyms fori; in practice
we consider all senses of the immediate hypernym
j for each potential novel hypernym, and all senses
of the coordinate termk and its first two hypernym
ancestors for each potential coordinate.

In thecontinentalexample, from the 26 individ-
ual pieces of evidence over words we construct the
set of 99 unique synsets that we will consider as
possible hypernyms; these include the two senses
of the wordairline, the ten senses of the wordcar-
rier, and so forth.

Next, we iterate through each of the possi-
ble hypernym synsetsl under which we might
add the new wordi; for each synsetl we com-
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pute the change in taxonomy score resulting from
adding the implied relationsI(H1

il) required by
the taxonomic constraints ofT. Since typically
our set of all evidence involvingi will be much
smaller than the set of possible relations inI(H1

il),
we may efficiently check whether, for each sense
s ∈ senses(w), for all words where we have
some evidenceER

iw, whether s participates in
some relation withi in the set of implied rela-
tions I(H1

il).
7 If there is more than one sense

s ∈ senses(w), we add toI(H1
il) the single re-

lationshipRis that maximizes the taxonomy like-
lihood, i.e. argmaxs∈senses(w) ∆T(Ris).

3.4 Hypernym Sense Disambiguation

A major strength of our model is its ability to cor-
rectly choose the sense of a hypernym to which
to add a novel hyponym, despite collecting ev-
idence over untagged word pairs. In our algo-
rithm word sense disambiguation is an implicit
side-effect of our algorithm; since our algorithm
chooses to add the single link which, with its im-
plied links, yields the most likely taxonomy, and
since each distinct synset in WordNet has a differ-
ent immediate neighborhood of relations, our al-
gorithm simply disambiguates each node based on
its surrounding structural information.

As an example of sense disambiguation in prac-
tice, consider our example ofcontinental. Sup-
pose we are iterating through each of the 99 pos-
sible synsets under which we might addconti-
nentalas a hyponym, and we come to the synset
airline#n#2 in WordNet 2.1, i.e. “a commer-
cial organization serving as a common carrier.”
In this case we will iterate through each piece
of hypernym and coordinate evidence; we find
that the relationH(continental, carrier) is satis-
fied with high probability for the specific synset
carrier#n#5, the grandparent ofairline#n#2; thus
the factor ∆T(H3(continental, carrier#n#5)) is
included in the factor of the set of implied rela-
tions∆T

(
I(H1(continental, airline#n#2))

)
.

Suppose we instead evaluate thefirst synset
of airline, i.e., airline#n#1, with the gloss “a
hose that carries air under pressure.” For this
synset none of the other 20 relationships di-
rectly implied by hypernym evidence or the
5 relationships implied by the coordinate ev-

7Checking whether or notRis ∈ I(H1
il) may be effi-

ciently computed by checking whethers is in the hypernym
ancestors ofl or if it shares a least common subsumer withl
within 7 steps.

idence are implied by adding the single link
H1(continental,airline#n#1); thus the resulting
change in the set of implied links given by the cor-
rect “carrier” sense of airline is much higher than
that of the “hose” sense. In fact it is the largest of
all the 99 considered hypernym links forcontinen-
tal; H1(continental, airline#n#2) is link #18,736
added to the taxonomy by our algorithm.

4 Evaluation
In order to evaluate our framework for taxonomy
induction, we have applied hyponym acquisition
to construct several distinct taxonomies, starting
with the base of WordNet 2.1 and only adding
novel noun hyponyms. Further, we have con-
structed taxonomies using a baseline algorithm,
which uses the identical hypernym and coordinate
classifiers used in our joint algorithm, but which
does not combine the evidence of the classifiers.

In section 4.1 we describe our evaluation
methodology; in sections 4.2 and 4.3 we analyze
the fine-grained precision and disambiguation pre-
cision of our algorithm compared to the baseline;
in section 4.4 we compare the coarse-grained pre-
cision of our links (motivated by categories de-
fined by the WordNetsupersenses) against the
baseline algorithm and against an “oracle” for
named entity recognition.

Finally, in section 4.5 we evaluate the tax-
onomies inferred by our algorithm directly against
the WordNet 2.1 taxonomy; we perform this eval-
uation by testing each taxonomy on a set of human
judgments of hypernym and non-hypernym noun
pairs sampled from newswire text.

4.1 Methodology

We evaluate the quality of our acquired hy-
ponyms by direct judgment. In four sep-
arate annotation sessions, two judges labeled
{50,100,100,100} samples uniformly generated
from the first {100,1000,10000,20000} single
links added by our algorithm.

For the direct measure of fine-grained precision,
we simply ask for each linkH(X, Y ) added by the
system, isX a Y ? In addition to the fine-grained
precision, we give a coarse-grained evaluation, in-
spired by the idea of supersense-tagging in (Cia-
ramita and Johnson, 2003). The 26 supersenses
used in WordNet 2.1 are listed in Table 1; we label
a hyponym link as correct in the coarse-grained
evaluation if the novel hyponym is placed under
the appropriate supersense. This evaluation task
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1 Tops 8 communication 15 object 22 relation
2 act 9 event 16 person 23 shape
3 animal 10 feeling 17 phenomenon 24 state
4 artifact 11 food 18 plant 25 substance
5 attribute 12 group 19 possession 26 time
6 body 13 location 20 process
7 cognition 14 motive 21 quantity

Table 1: The 26 WordNet supersenses

is similar to a fine-grained Named Entity Recog-
nition (Fleischman and Hovy, 2002) task with 26
categories; for example, if our algorithm mistak-
enly inserts a novel non-capital city under the hy-
ponymstate capital, it will inherit the correct su-
persenselocation. Finally, we evaluate the abil-
ity of our algorithm to correctly choose the ap-
propriate sense of the hypernym under which a
novel hyponym is being added. Our labelers cate-
gorize each candidate sense-disambiguated hyper-
nym synset suggested by our algorithm into the
following categories:

c1: Correct sense-disambiguated hypernym.

c2: Correct hypernym word, but incorrect sense of
that word.

c3: Incorrect hypernym, but correct supersense.

c4: Any other relation is considered incorrect.

A single hyponym/hypernym pair is allowed to be
simultaneously labeled 2 and 3.

4.2 Fine-grained evaluation

Table 2 displays the results of our evaluation of
fine-grained precision for the baseline non-joint
algorithm (Base) and our joint algorithm (Joint),
as well as the relative error reduction (ER) of our
algorithm over the baseline. We use the mini-
mum of the two judges’ scores. Here we define
fine-grained precision asc1/total. We see that
our joint algorithm strongly outperforms the base-
line, and has high precision for predicting novel
hyponyms up to 10,000 links.

4.3 Hypernym sense disambiguation

Also in Table 2 we compare the sense dis-
ambiguation precision of our algorithm and the
baseline. Here we measure the precision of
sense-disambiguation among all examples where
each algorithm found a correct hyponym word;
our calculation for disambiguation precision is
c1/ (c1 + c2). Again our joint algorithm outper-
forms the baseline algorithm at all levels of re-
call. Interestingly the baseline disambiguation
precision improves with higher recall; this may

Fine-grained Pre. Disambiguation Pre.
#Links Base Joint ER Base Joint ER
100 0.60 1.00 100% 0.86 1.00 100%
1000 0.52 0.93 85% 0.84 1.00 100%
10000 0.46 0.84 70% 0.90 1.00 100%
20000 0.46 0.68 41% 0.94 0.98 68%

Table 2: Fine-grained and disambiguation preci-
sion and error reduction for hyponym acquisition

# Links NER Base Joint ER vs. ER vs.
Oracle NER Base

100 1.00 0.72 1.00 0% 100%
1000 0.69 0.68 0.99 97% 85%
10000 0.45 0.69 0.96 93% 70%
20000 0.54 0.69 0.92 83% 41%

Table 3: Coarse-grained precision and error reduc-
tion vs. Non-joint baseline and NER Oracle

be attributed to the observation that the highest-
confidence hypernyms predicted by individual
classifiers are likely to be polysemous, whereas
hypernyms of lower confidence are more fre-
quently monosemous (and thus trivially easy to
disambiguate).

4.4 Coarse-grained evaluation

We compute coarse-grained precision as(c1 +
c3)/total. Inferring the correct coarse-grained su-
persense of a novel hyponym can be viewed as a
fine-grained (26-category) Named Entity Recog-
nition task; our algorithm for taxonomy induction
can thus be viewed as performing high-accuracy
fine-grained NER. Here we compare against both
the baseline non-joint algorithm as well as an
“oracle” algorithm for Named Entity Recogni-
tion, which perfectly classifies the supersense of
all nouns that fall under the four supersenses
{person, group, location, quantity}, but works
only for those supersenses. Table 3 shows the
results of this coarse-grained evaluation. We see
that the baseline non-joint algorithm has higher
precision than the NER oracle as 10,000 and
20,000 links; however, both are significantly out-
performed by our joint algorithm, which main-
tains high coarse-grained precision (92%) even at
20,000 links.

4.5 Comparison of inferred taxonomies and
WordNet

For our final evaluation we compare our learned
taxonomies directly against the currently exist-
ing hypernym links in WordNet 2.1. In order to
compare taxonomies we use a hand-labeled test
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WN +10K +20K +30K +40K
PRE 0.524 0.524 0.574 0.583 0.571
REC 0.165 0.165 0.203 0.211 0.211

F 0.251 0.251 0.300 0.309 0.307

Table 4: Taxonomy hypernym classification vs.
WordNet 2.1 on hand-labeled testset

set of over 5,000 noun pairs, randomly-sampled
from newswire corpora (described in (Snow et al.,
2005)). We measured the performance of both our
inferred taxonomies and WordNet against this test
set.8 The performance and comparison of the best
WordNet classifier vs. our taxonomies is given in
Table 4. Our best-performing inferred taxonomy
on this test set is achieved after adding 30,000
novel hyponyms, achieving an 23% relative im-
provement in F-score over the WN2.1 classifier.

5 Conclusions

We have presented an algorithm for inducing se-
mantic taxonomies which attempts to globally
optimize the entire structure of the taxonomy.
Our probabilistic architecture also includes a new
model for learning coordinate terms based on
(m,n)-cousin classification. The model’s ability
to integrate heterogeneous evidence from different
classifiers offers a solution to the key problem of
choosing the correct word sense to which to attach
a new hypernym.
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